Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information ( i.e., animals’ visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented “3D Thin-Plate Spline” warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes’ bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms.
References
[1]
Azzurro, E.; Aguzzi, J.; Maynou, F.; Chiesa, J.J.; Savini, D. Diel rhythms in shallow Mediterranean rocky-reef fishes: A novel chronobiological approach. J. Mar. Biol. Assoc. UK 2013, 93, 461–470.
[2]
Aguzzi, J.; Company, J.B.; Costa, C.; Matabos, M.; Azzurro, E.; Mànuel, A.; Menesatti, P.; Sardà, F.; Canals, M.; Delory, E.; et al. Challenges to assessment of benthic populations and biodiversity as a result of rhythmic behaviour: Video solutions from cabled observatories. Oceanogr. Mar. Biol. 2012, 50, 235–286.
[3]
Barans, C.A.; Ardent, M.D.; Moore, T.; Schmidt, D. Remote video revisited: A visual technique for conducting long-term monitoring of reef fishes on the continental shelf. Mar. Technol. Soc. J. 2005, 39, 80–88.
[4]
Glover, A.G.; Gooday, A.J.; Bailey, D.M.; Chavaldonné, P.; Colaco, A.; Copley, J.; Cuvelier, D.; Desbruyères, D.; Kalogerepoulou, K.M.; Lejeusne, C.; et al. Temporal change in deep-sea benthic ecosystems: A review of the evidence from recent time-series studies. Adv. Mar. Biol. 2010, 58, 1–95.
[5]
Aguzzi, J.; Costa, C.; Company, J.B.; Fujiwhara, Y.; Favali, P.; Tunnicliffe, V.; Matabos, M.; Canals, M.; Mensatti, P. The New Synthesis of Cabled Observatory Science: Technology Meets Deep-Sea Ecology. Proceeding of the IEEE 13th Underwater Technology Symposium, Tokyo, Japan, 5–8 March 2013; pp. 1–8.
[6]
Favali, P.; Beranzoli, L.; D'Anna, G.; Gasparoni, F.; Marvaldi, J.; Clauss, G.; Gerber, H.W.; Nicot, M.; Marani, M.P.; Gamberi, F.; et al. A fleet of multiparameter observatories for geophysical and environmental monitoring at seafloor. Ann. Geophys. 2006, 49, 659–680.
[7]
Favali, P.; Beranzoli, L. Seafloor observatory science: A review. Ann. Geophys. 2006, 49, 515–567.
[8]
Barnes, C.R.; Best, M.M.R.; Paudet, L.; Pirenne, B. Understanding earth-ocean processes using real-time data from NEPTUNE Canada's widely distributed sensor networks, Northeast Pacific. Geosci. Can. 2011, 38, 21–30.
[9]
Aguzzi, J.; Costa, C.; Robert, K.; Matabos, M.; Antonucci, F.; Juniper, K.; Menesatti, P. Automated video-imaging for the detection of benthic crustaceans and bacterial mat coverage at VENUS undersea cabled network. Sensors 2011, 11, 10534–10556.
[10]
Aguzzi, J.; Costa, C.; Menesatti, P.; Fujiwara, Y.; Iwase, R.; Ramirez-Llorda, E. A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors 2009, 9, 8438–8455.
[11]
Priede, M.; Solan, M.; Mienert, J.; Person, R.; van Weering, T.C.E.; Pfannkuche, O.; O'Neill, N.; Tselepides, A.; Thomsen, L.; Favali, P.; et al. ESONET—European Sea Floor Observatory Network. Proceeding of the IEEE Bridges Across the Oceans Conference (OCEANS'04), Kobe, Japan, 9–12 November 2004; pp. 2155–2163.
[12]
Martha's Vineyard Coastal Observatory (MAVCO). Available online: http://www.whoi.edu/instruments/viewInstrument.do?id=8987#9007 (accessed on 15 May 2013).
[13]
Long-Term Ecosystem Observatory (LEO). Turbulence at Ocean Observatories. Available online: http://www.ccpo.odu.edu/TOO/ (accessed on 21 October 2013).
[14]
Aguzzi, J.; Manuél, A.; Condal, F.; Guillén, J.; Nogueras, M.; Del Río, J.; Costa, C.; Menesatti, P.; Puig, P.; Sardà, F.; et al. The new SEAfloor OBservatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors 2011, 11, 5850–5872.
[15]
Mànuel-Lázaro, A.; Nogueras, M.; Del Rio, J. OBSEA: An Expandable Seafloor Observatory. Sea Technology, 2010. Available oneline: http://www.sea-technology.com/features/2010/0710/obsea.html (accessed on 15 May 2013).
[16]
Condal, F.; Aguzzi, J.; Sardà, F.; Nogueras, M.; Cadena, J.; Costa, C.; Del Río, J.; Mànuel, A. Seasonal rhythm in a Mediterranean coastal fish community as monitored by a cabled observatory. Mar. Biol. 2013, 159, 2809–2817.
[17]
Matabos, M.; Aguzzi, J.; Robert, K.; Costa, C.; Menesatti, P.; Company, J.B.; Juniper, K. Multi-parametric study of behavioural modulation in demersal decapods at the VENUS cabled observatory in Saanich Inlet, British Columbia, Canada. J. Exp. Mar. Biol. Ecol. 2011, 401, 89–96.
Widder, E.A.; Robison, B.H.; Reisenbichler, K.R.; Haddock, S.H.D. Using red light for in situ observations of deep-sea fishes. Deep Sea Res. I 2005, 52, 2077–2085.
[20]
Furusawa, K.; Suehara, K.I.; Kameoka, T.; Hashimoto, A. Color Appearance Evaluation of Agricultural Products Image Based on Spectral Information of Lighting. Proceeding of SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010.
[21]
Costa, C.; Angelini, A.; Pallottino, P.; Antonucci, A.; Aguzzi, J.; Menesatti, P. RGB color calibration for quantitative image analysis: The “3D Thin-Plate Spline” warping approach. Sensors 2012, 12, 7063–7079.
[22]
Senthilkumaran, N.; Rajesh, R. Edge detection techniques for image segmentation: A survey of soft computing appraches. Int. J. Recent Trends Eng. 2008, 1, 250–254.
[23]
Sokolove, P.G.; Bushell, W.N. The chi-square periodogram: Its utility for analysis of circadian rhythms. J. Theor. Biol. 1978, 72, 131–160.
[24]
Diez-Noguera, A. Software “El Temps” Version 214. Barcelona, Spain. Available online: http://www.el-temps.com/download/download.htm (accessed on 28 October 2013).
[25]
Cambras, T.; Vilaplana, J.; Campuzano, A.; Canal-Corretger, M.M.; Carulla, M.; Díez-Noguera, A. Entrainment of the rat motor activity rhythm: Effects of the light-dark cycle and physical exercise. Physiol. Behav. 2000, 70, 227–232.
[26]
Chiesa, J.J.; Aguzzi, J.; García, J.A.; Sardà, F.; de la Iglesia, H.O. Light intensity determines temporal niche switching of behavioural activity in deep-water Nephrops. norvegicus (Crustacea: Decapoda). J. Biol. Rhythm. 2010, 25, 277–287.
[27]
Aguzzi, J.; Bullock, N.M.; Tosini, G. Spontaneous internal desynchronization of locomotor activity and body temperature rhythms from plasma melatonin rhythm in rats exposed to constant dim light. J. Circad. Rhythm. 2006, 4, doi:10.1186/1740-3391-4-6.
[28]
Aguzzi, J.; Costa, C.; Furushima, Y.; Chiesa, J.J.; Company, J.B.; Menesatti, P.; Iwase, R.; Fujiwara, Y. Behavioural rhythms of hydrocarbon seep fauna in relation to internal tides. Mar. Ecol. Progr. Ser. 2010, 418, 47–56.
[29]
Doya, C.; Aguzzi, J.; Pardo, M.; Matabos, M.; Company, J.B.; Costa, C.; Mihaly, S.; Canals, M. Diel Behavioral Rhythms in Sablefish (Anoplopoma Fimbria) and Other Benthic Species, as Recorded by the Deep-Sea Cabled Observatories in Barkley Canyon (NEPTUNE-Canada). Available online: http://www.sciencedirect.com/science/article/pii/S0924796313000869 (accessed on 19 April 2013).
[30]
European Commission for Research Infrastructures (ESFRI). Available online: http://www.cordis.europa.eu/esfri/roadmap.htm (accessed on 15 May 2013).
[31]
European Multidisciplinary Seafloor Observatory (EMSO). Available online: http://www.emso-eu.org (accessed on 15 May 2013).
[32]
Lindstrom, E.; Gunn, J.; Fischer, A.; McCurdy, A.; Glover, L.K. A Framework for Ocean Observing. Proceedings of the Ocean Information for Society: Sustaining the Benefits, Realizing the Potential, Venice, Italy, 21–25 September 2012.