Electronic Olfaction Systems (EOSs) based on a variety of gas-sensing technologies have been developed to simulate in a simplified manner animal olfactory sensing systems. EOSs have been successfully applied to many applications and fields, including food technology and agriculture. Less information is available for EOS applications in the feed technology and animal nutrition sectors. Volatile Organic Compounds (VOCs), which are derived from both forages and concentrate ingredients of farm animal rations, are considered and described in this review as olfactory markers for feedstock quality and safety evaluation. EOS applications to detect VOCs from feedstuffs (as analytical matrices) are described, and some future scenarios are hypothesised. Furthermore, some EOS applications in animal feeding behaviour and organoleptic feed assessment are also described.
References
[1]
Cheli, F.; Battaglia, D.; Pinotti, L.; Baldi, A. State of the art in feedstuff analysis: A technique-oriented perspective. J. Agric. Food Chem. 2012, 60, 9529–9542.
[2]
Cheli, F.; Campagnoli, A.; Dell'Orto, V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013, 183, 1–16.
[3]
Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348.
[4]
Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148.
[5]
Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B 1994, 18, 211–220.
[6]
D'Amico, A.; di Natale, C.; Paolesse, R. Portraits of gases and liquids by arrays of non-specific chemical sensors: Trends and perspectives. Sens. Actuators B 2000, 68, 324–330.
[7]
R?ck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.
[8]
García-González, D.L.; Aparicio, R. Sensors: From biosensors to the electronic nose. Grasas Y Aceites 2002, 53, 96–114.
[9]
Mielle, P.; Marquis, F.; Latrasse, C. Electronic noses: Specify or disappear. Sens. Actuators B 2000, 69, 287–294.
[10]
García Pinto, C.; Fernández Laespada, M.E.; Pérez Pavón, J.L.; Moreno Cordero, B. Electronic olfactometry. A new tool in analytical chemistry. Quím. Anal. 2001, 20, 3–11.
[11]
Nakamoto, T.; Nakahira, Y.; Hiramatsu, H.; Moriizumi, T. Odor recorder using active odor sensing system. Sens. Actuators B 2001, 76, 465–469.
[12]
Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D'Amico, A.; Ubigli, M.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sens. Actuators B 2000, 69, 342–347.
[13]
Ikegami, A.; Kaneyasu, M. Olfactory Detection Using Integrated Sensors. Proceedings of the 3rd International Conference on Solid-State Sensors and Actuators, Philadelphia, PA, USA, 1–14 June 1985; pp. 136–139.
[14]
Persuard, K.; Dodd, G.H. Analysis of discrimination mechanisms of the mammalian olfactory system using model nose. Nature 1982, 299, 352–355.
[15]
Roura, E.; Brooke, B.; Tedo, G.; Ipharraguerre, I. Unfolding the codes of short-term feed appetence in farm and companion animals. A comparative oronasal nutrient sensing biology review. Can. J. Anim. Sci. 2008, 88, 535–558.
[16]
Autrum, H.; Zwehl, V. The spectral sensitivity of individual photoreceptor cells of the bee's eye. J. Comp. Physiol. 1964, 48, 357–384.
[17]
Keady, T.W.J.; Marley, C.M.; Scollan, N.D. Grass and Alternative Forage Silages for Beef Cattle and Sheep: Effects on Animal Performance. Proceedings XVI International Silage Conference, H?meenlinna, Finland; Kuoppala, K., Rinne, M., Vanhatalo, A., Eds.; MTT Agrifood Research Finland and University of Helsinki Press: Helsinki, Finland, 2012; pp. 152–165.
[18]
Wilkins, R.J. Silage: A Global Perspective. In Grasslands. Developments, Opportunities, Perspectives; Reynolds, S.G., Frame, J., Eds.; Science Publisher Inc.: Enfield, NH, USA, 2005; pp. 111–132.
[19]
Allen, M.S.; Coors, J.G.; Roth, G.W. Corn Silage. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2003; pp. 547–608.
[20]
McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed. ed.; Chalcombe Publications: Marlow, UK, 1991.
[21]
Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19.
[22]
Ashbell, G.; Weinberg, Z.G.; Hen, Y.; Filya, I. The effects of temperature on the aerobic stability of wheat and corn silages. J. Ind. Microbiol. Biotechnol. 2002, 28, 261–263.
[23]
Scudamore, K.A.; Livesey, C.T. Occurrence and significance of mycotoxins in forage crops and silage: A review. J. Sci. Food Agric. 1998, 77, 1–17.
[24]
Driehuis, F.; Oude Elferink, S.J. The impact of the quality of silage on animal health and food safety: A review. Vet. Q. 2000, 22, 212–216.
[25]
Huhtanen, P.; Khalili, H.; Nousiainen, J.I.; Rinne, M.; Jaakkola, S.; Heikkila, T.; Nousiainen, J. Prediction of the relative intake potential of grass silage by dairy cows. Livest. Prod. Sci. 2002, 73, 111–130.
[26]
Meeske, R.; Basson, H.M.; Pienaar, J.P.; Cruywagen, C.W. A comparison of the yield, nutritional value and predicted production potential of different maize hybrids for silage production. S. Afr. J. Anim. Sci. 2000, 30, 18–21.
[27]
Randby, A.T.; Weisbjerg, M.R.; N?rgaard, P.; Heringstad, B. Early lactation feed intake and milk yield responses of dairy cows offered grass silages harvested at early maturity stages. J. Dairy Sci. 2012, 95, 304–317.
[28]
Koc, F.; Polat, C.; Ozduven, M.L. The effects of wet brewer's grain whole plant maize mixture silages on fermentation characteristics and nutrient digestibility in lambs. Poljoprivreda/Agriculture 2010, 16, 35–41.
[29]
Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2003; pp. 31–93.
[30]
Rooke, J.A.; Hatfield, R.D. Biochemistry of Ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2003; pp. 95–139.
[31]
Borreani, G.; Tabacco, E.; Cavallarin, L. A new oxygen barrier film reduces aerobic deterioration in farm-scale corn silage. J. Dairy Sci. 2007, 90, 4701–4706.
[32]
De Oliveira, L.A. Rapid evaluation of silage. Point Vet. 2013, 44, s100–s103.
[33]
Honig, H. Evaluation of aerobic stability. Grass Forage Rep. 1990, 3, s76–s82.
[34]
Johnson, L.M.; Harrison, J.H.; Davidson, D.; Robutti, J.L.; Swift, M.; Mahanna, W.C.; Shinners, K. Corn silage management I: Effects of hybrid, maturity, and mechanical processing on chemical and physical characteristics. J. Dairy Sci. 2002, 85, 833–853.
[35]
Borreani, G.; Tabacco, E. The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. J. Dairy Sci. 2010, 93, 2620–2629.
[36]
Commission Regulation (EC) No 183/2005 of 12 January 2005 laying down requirements for feed hygiene(08/01/2005). Off. J. Eur. Union 2005, L35, 1–22.
[37]
Storm, I.M.L.D.; Kristensen, N.B.; Raun, B.M.L.; Smedsgaard, J.; Thrane, U. Dynamics in the microbiology of maize silage during whole-season storage. J. Appl. Microbiol. 2010, 109, 1017–1026.
[38]
Masoero, G.; Sala, G.; Peiretti, P.G. Development of near infrared (NIR) spectroscopy and electronic nose (EN) techniques to analyse the conservation quality of farm silages. J. Food Agric. Environ. 2007, 5, 172–177.
[39]
Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1998, 71, 2992–3002.
[40]
Mo, M.; Selmer-Olsen, I.; Randby, ?.T.; Aakre, S.E.; Asmyhr, A. “New” Fermentation Products in Grass Silage and Their Effects on Feed Intake and Milk Taste. Proceedings of the 10th International Symposium on Forage Conservation, Brno, Czech Republic, 10–12 September 2001; pp. 98–99.
[41]
Kristensen, N.B.; Sloth, K.H.; H?jberg, O.; Spliid, N.H.; Jensen, C.; Th?gersen, R. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J. Dairy Sci. 2010, 93, 3764–3774.
[42]
Figueiredo, R.; Rodrigues, A.I.; do Céu Costa, M. Volatile composition of red clover (Trifolium pratense L.) forages in Portugal: The influence of ripening stage and ensilage. Food Chem. 2007, 104, 1445–1453.
[43]
Wei?, K.; Auerbach, H. Occurence of Volatile Organic Compounds and Ethanol in Different Types of Silages. Proceedings XVI International Silage Conference, H?meenlinna, Finland; Kuoppala, K., Rinne, M., Vanhatalo, A., Eds.; MTT Agrifood Research Finland and University of Helsinki Press: Helsinki, Finland, 2012; pp. 128–129.
[44]
Seglar, B. Fermentation Analysis and Silage Quality Testing. Proceedings of the Minnesota Dair Health Conference College of Veterinary Medicine, St. Paul, MN, USA, 20 May 2003; pp. 119–136.
[45]
Weiss, K.; Auerbach, H. The effect of different types of chemical silages additives on dry matter losses, fermentation pattern, volatile organic compounds (VOC) and aerobic stability on maize silage. Proceedings of the XVI International Silage Conference, H?meenlinna, Finland, 2–4 July 2012; pp. 360–361.
[46]
Krizsan, S.J.; Westad, F.; Adn?y, T.; Odden, E.; Aakre, S.E.; Randby, A.T. Effect of volatile compounds in grass silage on voluntary intake by growing cattle. Animal 2007, 1, 283–292.
[47]
Ro?, F.; Boeker, P.; Büscher, W.; Gerlach, K.; Haas, T.; Maack, C.; Südekum, K.-H. A Chemosensor System for Assessment of Silage Quality. Proceedings of the XVI International Silage Conference, H?meenlinna, Finland, 2–4 July 2012; pp. 111–112.
[48]
Aii, T.; Yonaga, M.; Tanaka, H. Effect of haymaking procedures on the flavour constituents of Italian ryegrass hay. J. Jpn. Soc. Grassl. Sci. 1981, 27, 106–113.
[49]
Akakabe, Y. The effect of odor in palatability for cattle forage Italian ryegrass hay and silage. Aroma Res. 2009, 10, 358–363.
[50]
Galvano, F.; Ritieni, A.; Piva, G.; Pietri, A. Mycotoxins in Human Food Chain. In The Mycotoxin Blue Book, 2nd ed.; Diaz, T.D., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 187–224.
[51]
Schnurer, J.; Olsson, J.; Borjesson, T. Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet. Biol. 1999, 27, 209–217.
[52]
Magan, N.; Evans, P. Volatiles as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. 2000, 36, 319–340.
[53]
Gobbi, E.; Falasconi, M.; Torelli, E.; Sberveglieri, G. Electronic nose predicts high and low fumonisin contamination in maize cultures. Food Res. Int. 2011, 44, 992–999.
[54]
Filtenborg, O.; Frisvad, J.C.; Thrane, U. Moulds in food spoilage. Int. J. Food Microbiol. 1996, 33, 85–102.
[55]
Borjesson, T.S.; Stollman, U.M.; Schnurer, J. Off-odorous compounds produced by molds on oatmeal agar: Identification and relation to other growth characteristics. J. Food Chem. 1993, 41, 2104–2111.
[56]
Presicce, D.S.; Forleo, A.; Taurino, A.M.; Zuppa, M.; Siciliano, P.; Laddomada, B.; Logrieco, A.; Visconti, A. Response evaluation of an E-nose towards contaminated wheat by Fusarium poae fungi. Sens. Actuators B 2006, 118, 433–438.
[57]
Olsson, J.; Borjesson, T.; Lundstedt, T.; Schnuerer, J. Detection and quantification of ochratoxin and deoxinivalenol in barley grain by GC-MS and electronic nose. Int. J. Food Microbiol. 2002, 72, 203–214.
Concina, I.; Falasconi, M.; Gobbi, E.; Bianchi, F.; Musci, M.; Mattarozzi, M.; Pardo, M.; Mangia, A.; Careri, M.; Sbeveglieri, G. Early detection of microbial contamination in processed tomato by electronic nose. Food Control 2009, 20, 837–880.
[60]
Feast, S. Potential application of electronic noses in cereals. Cereal Food World 2001, 46, 159–161.
[61]
Kaminski, E.; Libbey, L.M.; Stawicki, S.; Wasowicz, E. Identification of the predominant volatile compound produced by Aspergillus flavus. Appl. Microbiol. 1972, 24, 721–726.
[62]
Kaminski, E.; Stawicki, S.; Wasowicz, E. Volatile flavour compounds produced by moulds of Aspergillus, Penicillium and fungi imperfecti. Appl. Microbiol. 1974, 27, 1001–1004.
[63]
Kaminski, E.; Wasowicz, E. The Usage of Volatile Compounds Produced by Moulds as Indicators of Grain Deterioration. In Cereal Grain: Mycotoxins, Fungi and Quality in Drying and Storage; Chelkowski, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 229–280.
[64]
Jelen, H.H.; Mirocha, C.J.; Wasowicz, E.; Kaminski, E. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Appl. Environ. Microbiol. 1995, 61, 3815–3820.
[65]
Perkowski, J.; Bu?ko, M.; Chmielewski, J.; Góral, T.; Tyrakowska, B. Content of trichodiene and analysis of fungal volatiles (electronic nose) in wheat and triticale grain naturally infected and inoculated with Fusarium culmorum. Int. J. Food Microbiol. 2008, 126, 127–134.
[66]
Keshri, G.; Voysey, P.; Magan, N. Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays. J. Appl. Microbiol. 2002, 92, 165–172.
[67]
Marín, S.; Vinaixa, M.; Brezmes, J.; Llobet, E.; Vilanova, X.; Correig, X.; Ramos, A.J.; Sanchis, V. Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products. Int. J. Food Microbiol. 2007, 114, 10–16.
[68]
Paolesse, R.; Alimelli, A.; Martinelli, E.; di Natale, C.; D'Amico, A.; D'Egidio, M.G.; Aureli, G.; Ricelli, A.; Fanelli, C. Detection of fungal contamination of cereal grain samples by an electronic nose. Sens. Actuators B 2006, 119, 425–430.
[69]
Abramson, D.; Hulasare, R.; York, R.K.; White, N.D.G.; Jayas, D.S. Mycotoxins, ergosterol, and odor volatiles in durum wheat during granary storage at 16% and 20% moisture content. J. Stored Prod. Res. 2005, 41, 67–76.
[70]
Balasubramanian, S.; Panigrahi, S.; Kottapalli, B.; Wolf-Hall, C.E. Evaluation of an artificial olfactory system for grain quality discrimination. LWT Food Sci. Technol. 2007, 40, 1815–1825.
[71]
Evans, P.; Persaud, K.C.; McNeish, A.S.; Sneath, R.W.; Hobson, N.; Magan, N. Detection of Contaminants in Grain and Infestation in Bulk and in Transit Grain by Sensors and Physical Methods. Proceedings of the International Symposium of Electronic Noses (ISOEN), Brighton, UK, 20–24 July 2000; pp. 221–224.
[72]
Karlsh?j, K.; Nielsen, P.V.; Larsen, T.O. Prediction of Penicillium expansum spoilage and patulin concentration in apples used for apple juice production by electronic nose analysis. J. Agric. Food Chem. 2007, 55, 4289–4298.
[73]
Keshri, G.; Magan, N. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes. J. Appl. Microbiol. 2000, 89, 825–833.
[74]
Cheli, F.; Campagnoli, A.; Pinotti, L.; Savoini, G.; Dell'Orto, V. Electronic nose for determination of aflatoxins in maize. Biotechnol. Agron. Soc. 2009, 13, 39–43.
[75]
Campagnoli, A.; Cheli, F.; Savoini, G.; Crotti, A.; Pastori, A.G.M.; Dell'Orto, V. Application of an electronic nose to detection of aflatoxins in corn. Vet. Res. Commun. 2009, 33, S273–S275.
[76]
Eifler, J.; Martinelli, E.; Santonico, M.; Capuano, R.; Schild, D.; di Natale, C. Differential detection of potentially hazardous fusarium species in wheat grains by an electronic nose. PLoS One 2011, 6, doi:10.1371/journal.pone.0021026.
[77]
Campagnoli, A.; Cheli, F.; Polidori, C.; Zaninelli, M.; Zecca, O.; Savoini, G.; Pinotti, L.; Dell'Orto, V. Use of the electronic nose as a screening tool for the recognition of durum wheat naturally contaminated by deoxynivalenol: A preliminary approach. Sensors 2011, 11, 4899–4916.
[78]
Zhang, H.M.; Wang, J. Detection of age and insect damage incurred by wheat, with an electronic nose. J. Stored Prod. 2007, 43, 489–495.
[79]
Campagnoli, A.; Pinotti, L.; Tognon, G.; Cheli, F.; Baldi, A.; Dell'Orto, V. Potential application of electonic nose in processed animal proteins (PAP) detection in feedstuffs. Biotechnol. Agron. Soc. 2004, 8, 253–255.
[80]
Hui, L.; Zhiyou, N. Comparison of total volatile basic nitrogen detection models in fishmeal based on electronic nose. Trans. Chin. Soc. Agric. Eng. 2010, 4, 322–326.
[81]
Rapiasarda, T.; Belvedere, G.; La Terra, F.; Cannas, A.; Licitra, G.; Carpino, S. Animal Feed Assesment Quality by SMartNose. Proceedings of American Dairy Science Association/American Society of Animal Science, Indianapolis, IN, USA, 7–11 July 2008; p. p. 618.
[82]
Rapisarda, T.; Mereu, A.; Cannas, A.; Belvedere, G.; Licitra, G.; Carpino, S. Volatile organic compounds and palatability of concentrates fed to lambs and ewes. Small Rumin. Res. 2012, 103, 120–132.
[83]
Phaisangittisagul, E.; Nagle, H.T.; Areekul, V. Intelligent method for sensor subset selection for machine olfaction. Sens. Actuator B: Chem. 2010, 145, 507–515.
[84]
Cheli, F.; Pinotti, L.; Campagnoli, A.; Rebucci, R.; Fusi, E.; Baldi, A. Mycotoxin analysis, mycotoxins-producing fungi assays and mycotoxins toxicity bioassay in food mycotoxins monitoring and surveillance. Review. Ital. J. Food Sci. 2008, 4, 447–462.
[85]
Cheli, F.; Campagnoli, A.; Ventura, V.; Brera, C.; Berdini, C.; Palmaccio, E.; Dell'Orto, V. Effects of industrial processing on the distributions of deoxynivalenol, cadmium and lead in durum wheat milling fractions. LWT Food Sci. Technol. 2010, 43, 1050–1057.
[86]
Halova, J.; Strouf, O.; Zak, P.; Sochozova, A.; Uchida, N.; Yuzuri, T.; Sakakibara, K.; Hirota, M. QSAR of catechol analogs against malignant melanoma using fingerprint descriptors. Quant. Struct. Act. Relatsh. 1998, 17, 37–39.
[87]
Firestein, S. How the olfactory system makes sense of scents. Nature 2001, 413, 211–218.
[88]
Miller, M.G.; Teates, J.F. Oral somatosensory factors in dietary self-selection after food deprivation and supplementation. Behav. Neurosci. 1984, 98, 424–434.
[89]
Hyde, R.J.; Witherly, S.A. Dynamic contrast: A sensory contribution to palatability. Appetite 1993, 21, 1–16.