Mood disorders are common mental diseases, but physiological diagnostic methods are still lacking. Since much evidence has implied a relationship between mood disorders and the protein composition of blood sera, it is conceivable to develop a serological criterion for assisting diagnosis of mood disorders, based on a correlative database with enough capacity and high quality. In this pilot study, a low-cost microfluidic microarray device for quantifying at most 384 serological biomarkers at the same time was designed for the data acquisition of the serological study. The 1,536-chamber microfluidic device was modeled on a 1,536-well microtiter plate in order to employ a common microplate reader as the detection module for measuring the chemiluminescent immunoassay tests on the chips. The microfluidic microarrays were rapidly fabricated on polymethylmethacrylate slides using carbon dioxide laser ablation, followed by effective surface treatment processing. Sixteen types of different capture antibodies were immobilized on the chips to test the corresponding hormones and cytokines. The preliminary tests indicated that the signal-to-noise ratio and the limit of detection of microfluidic microarrays have reached the level of standard ELISA tests, whereas the operation time of microfluidic microarrays was sharply reduced.
References
[1]
Eyre, H.; Baune, B.T. Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrinology 2012, 37, 1397–1416.
[2]
Hendrick, V.; Altshuler, L.L.; Suri, R. Hormonal changes in the postpartum and implications for postpartum depression. Psychosomatics 1998, 39, 93–101.
[3]
Steiner, M.; Dunn, E.; Born, L. Hormones and mood: From menarche to menopause and beyond. J. Affect Disord. 2003, 74, 67–83.
[4]
Agid, Y.; Buzsaki, G.; Diamond, D.M.; Frackowiak, R.; Giedd, J.; Girault, J.A.; Grace, A.; Lambert, J.J.; Manji, H.; Mayberg, H.; et al. How can drug discovery for psychiatric disorders be improved? Nat. Rev. Drug Discov. 2007, 6, 189–201.
[5]
Mathew, S.J.; Manji, H.K.; Charney, D.S. Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 2008, 33, 2080–2092.
[6]
Spedding, M.; Jay, T.; Costa e Silva, J.; Perret, L. A pathophysiological paradigm for the therapy of psychiatric disease. Nat. Rev. Drug Discov. 2005, 4, 467–476.
[7]
Goddard, A.W.; Ball, S.G.; Martinez, J.; Robinson, M.J.; Yang, C.R.; Russell, J.M.; Shekhar, A. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress. Anxiety 2010, 27, 339–350.
[8]
Mann, J.J. The medical management of depression. N Engl. J. Med. 2005, 353, 1819–1834.
[9]
Cameron, O.G.; Abelson, J.L.; Young, E.A. Anxious and depressive disorders and their comorbidity: Effect on central nervous system noradrenergic function. Biol. Psychiat. 2004, 56, 875–883.
[10]
Goddard, A.W.; Charney, D.S. Toward an integrated neurobiology of panic disorder. J. Clin. Psychiatry 1997, 58, 4–12.
[11]
Cameron, O.G. Anxious-depressive comorbidity: Effects on HPA axis and CNS noradrenergic functions. Essent. Psychopharmacol. 2006, 7, 24–34.
[12]
Young, E.A.; Abelson, J.L.; Cameron, O.G. Interaction of brain noradrenergic system and the hypothalamic-pituitary-adrenal (HPA) axis in man. Psychoneuroendocrinology 2005, 30, 807–814.
[13]
Templin, M.F.; Stoll, D.; Schrenk, M.; Traub, P.C.; Vohringer, C.F.; Joos, T.O. Protein microarray technology. Trends Biotechnol. 2002, 20, 160–166.
[14]
Wang, L.; Li, P.C. Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA. Anal. Biochem. 2010, 400, 282–288.
[15]
Kokocinski, F.; Delhomme, N.; Wrobel, G.; Hummerich, L.; Toedt, G.; Lichter, P. FACT—A framework for the functional interpretation of high-throughput experiments. BMC Bioinforma. 2005, 6, doi:10.1186/1471-2105-6-161.
[16]
Zhao, X.; Dong, T.; Yang, Z.; Pires, N.; Hoivik, N. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation. Lab Chip 2012, 12, 602–612.
[17]
Niemeyer, C.M.; Adler, M.; Wacker, R. Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2007, 2, 1918–1930.
[18]
Pires, N.M.; Dong, T.; Hanke, U.; Hoivik, N. Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care detection of hormonal compounds. J. Biomed. Opt. 2013, 18, doi:10.1117/1.JBO.18.9.097001.
[19]
Zhao, X.; Dong, T. Multifunctional sample preparation kit and on-chip quantitative nucleic acid sequence-based amplification tests for microbial detection. Anal. Chem. 2012, 84, 8541–8548.
[20]
Chen, C.Y.; Chang, C.L.; Chang, C.W.; Lai, S.C.; Chien, T.F.; Huang, H.Y.; Chiou, J.C.; Luo, C.H. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications. Sensors 2013, 13, 3077–3091.
[21]
Vesel, A.; Elersic, K.; Mozetic, M. Immobilization of protein streptavidin to the surface of PMMA polymer. Vacuum 2012, 86, 773–775.
[22]
Díaz, A.N.; Sánchez, F.G.; Baro, E.N.; Díaz, A.F.G.; Aguilar, A.; Algarra, M. Sensitive chemiluminescent immunoassay of triclopyr by digital image analysis. Talanta 2012, 97, 42–47.
[23]
Ma, X.L.; Li, H.H.; Wu, M.; Sun, C.; Li, L.F.; Yang, X.D. Flow Injection Chemiluminescent Immunoassay for Carcinoembryonic Antigen Using Boronic Immunoaffinity Column. Sensors 2009, 9, 10389–10399.
[24]
Dong, T.; Su, Q.H.; Yang, Z.C.; Zhang, Y.L.; Egeland, E.B.; Gu, D.D.; Calabrese, P.; Kapiris, M.J.; Karlsen, F.; Minh, N.T.; et al. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation. J. Micromech. Microeng. 2010, 20, doi:10.1088/0960-1317/20/11/115021.
[25]
Tran-Minh, N.; Dong, T.; Su, Q.H.; Yang, Z.C.; Jakobsen, H.; Karlsen, F. Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells. Biomed. Microdevices 2011, 13, 179–190.
[26]
Dong, T.; Yang, Z.C.; Su, Q.H.; Nhut, M.T.; Egeland, E.B.; Karlsen, F.; Zhang, Y.L.; Kapiris, M.J.; Jakobsen, H. Integratable non-clogging microconcentrator based on counter-flow principle for continuous enrichment of CaSki cells sample. Microfluid. Nanofluid. 2011, 10, 855–865.
[27]
Zhang, L.; Dong, T. A Si/SiGe quantum well based biosensor for direct analysis of exothermic biochemical reaction. J. Micromech. Microeng. 2013, 23, doi:10.1088/0960-1317/23/4/045011.
[28]
Becker, H.; Gartner, C. Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 2008, 390, 89–111.
[29]
Kovarik, M.L.; Gach, P.C.; Ornoff, D.M.; Wang, Y.; Balowski, J.; Farrag, L.; Allbritton, N.L. Micro total analysis systems for cell biology and biochemical assays. Anal. Chem. 2012, 84, 516–540.
[30]
Pires, N.M. M.; Dong, T.; Yang, Z.C.; Hoivik, N.; Zhao, X.Y. A mediator embedded micro-immunosensing unit for electrochemical detection on viruses within physiological saline media. J. Micromech. Microeng. 2011, 21, doi:10.1088/0960-1317/21/11/115031.