全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Biostable ssDNA Aptamers Specific for Hodgkin Lymphoma

DOI: 10.3390/s131114543

Keywords: aptamer, biostability, Hodgkin lymphoma, single-stranded DNA (ssDNA), tumor cell detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

As a “chemical antibody”, oligonucleotide aptamers can specifically bind to their target molecules. However, clinical potential of aptamers in disease diagnosis is not yet fully explored. Using a tumor cell-based selection protocol, we developed single-stranded DNA aptamers for Hodgkin lymphoma (HL) tumor cells. The aptamers specifically bound to HL cells with a high affinity, reaching maximal cell binding at 10 nM final concentration. Importantly, the aptamers were able to selectively detect HL cells and did not react to other tumor or blood cells in mixed samples, indicating that the aptamers can be used as a specific probe for in vitro analysis of HL cells. Moreover, due to the inherent properties of DNA, the aptamers were stable in human serum, suggesting potential for in vivo detection of HL tumor cells.

References

[1]  Armitage, J.O.; Weisenburger, D.D. New approach to classifying non-Hodgkin's lymphomas: Clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J. Clin. Oncol. 1998, 16, 2780–2795.
[2]  Armitage, J.O.; Bierman, P.J.; Bociek, R.G.; Vose, J.M.; Harris, M.E. Lymphoma 2006: Classification and treatment. Oncology 2006, 20, 231–239.
[3]  Campo, E. Whole genome profiling and other high throughput technologies in lymphoid neoplasms—current contributions and future hopes. Mod. Pathol. 2013, 26, S97–S110.
[4]  Meyerson, M.; Gabriel, S.; Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 2010, 11, 685–696.
[5]  Niel?nder, I.; Bug, S.; Richter, J.; Giefing, M.; Martín-Subero, J.I.; Siebert, R. Combining array based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. Apmis 2007, 115, 1107–1134.
[6]  Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511.
[7]  Swerdllow, S.H.; Campo, E.; Harris, N.L. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. ed.; IARC Press: Lyon, France, 2008.
[8]  Chan, W.C.; Armitage, J.O.; Gascoyne, R.; Connors, J.; Close, P.; Jacobs, P.; Norton, A.; Lister, T.A.; Pedrinis, E.; Cavalli, F. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 1997, 89, 3909–3918.
[9]  Harris, N.L.; Jaffe, E.S.; Stein, H.; Banks, P.M.; Chan, J.K.; Cleary, M.L.; Delsol, G.; de Wolf-Peeters, C.; Falini, B.; Gatter, K.C. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood 1994, 84, 1361–1392.
[10]  Swerdlow, S.H. Lymphoma classification and the tools of our trade: An introduction to the 2012 USCAP Long Course. Mod. Pathol. 2013, 26, S1–S14.
[11]  Salaverria, I.; Siebert, R. The gray zone between Burkitt's lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J. Clin. Oncol. 2011, 29, 1835–1843.
[12]  Carbone, A.; Gloghini, A.; Aiello, A.; Testi, A.; Cabras, A. B-cell lymphomas with features intermediate between distinct pathologic entities. From pathogenesis to pathology. Hum. Pathol. 2010, 41, 621–631.
[13]  Hasserjian, R.P.; Ott, G.; Elenitoba-Johnson, K.S.J.; Balague-Ponz, O.; de Jong, D.; de Leval, L. Commentary on the WHO classification of tumors of lymphoid tissues (2008): Gray zone lymphomas overlapping with Burkitt lymphoma or classical Hodgkin lymphoma. J. Hematopathol. 2009, 2, 89–95.
[14]  Tiacci, E.; D?ring, C.; Brune, V.; van Noesel, C.J.M.; Klapper, W.; Mechtersheimer, G.; Falini, B.; Küppers, R.; Hansmann, M.-L. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012, 120, 4609–4620.
[15]  Jaffe, E.S. The 2008 WHO classification of lymphomas: Implications for clinical practice and translational research. ASH Educ. Progr. Book 2009, 2009, 523–531.
[16]  Harris, N.L. Shades of gray between large B-cell lymphomas and Hodgkin lymphomas: Differential diagnosis and biological implications. Mod. Pathol. 2013, 26, S57–S70.
[17]  Jaffe, E.S.; Harris, N.L.; Stein, H.; Isaacson, P.G. Classification of lymphoid neoplasms: The microscope as a tool for disease discovery. Blood 2008, 112, 4384–4399.
[18]  Fromm, J.R.; Kussick, S.J.; Wood, B.L. Identification and purification of classical hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting. Am. J. Clin. Pathol. 2006, 126, 764–780.
[19]  Ray, S.; Craig, F.E.; Swerdlow, S.H. Abnormal patterns of antigenic expression in follicular lymphoma a flow cytometric study. Am. J. Clin. Pathol. 2005, 124, 576–583.
[20]  Parekh, P.; Tang, Z.; Turner, P.C.; Moyer, R.W.; Tan, W. Aptamers recognize glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal. Chem. 2010, 82, 8642–8649.
[21]  Sefah, K.; Tang, Z.; Shangguan, D.; Chen, H.; Lopez-Colon, D.; Li, Y.; Parekh, P.; Martin, J.; Meng, L.; Phillips, J. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 2009, 23, 235–244.
[22]  Bayrac, A.T.; Sefah, K.; Parekh, P.; Bayrac, C.; Gulbakan, B.; Oktem, H.A.; Tan, W. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem. Neurosci. 2011, 2, 175–181.
[23]  Bruno, J.G.; Kiel, J.L. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectron. 1999, 14, 457–464.
[24]  Kirby, R.; Cho, E.J.; Gehrke, B.; Bayer, T.; Park, Y.S.; Neikirk, D.P.; McDevitt, J.T.; Ellington, A.D. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal. Chem. 2004, 76, 4066–4075.
[25]  Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z.C.; Chen, H.W.; Mallikaratchy, P.; Sefah, K.; Yang, C.J.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 2006, 103, 11838–11843.
[26]  Tang, Z.; Parekh, P.; Turner, P.; Moyer, R.W.; Tan, W. Generating aptamers for recognition of virus-infected cells. Clin. Chem. 2009, 55, 813–822.
[27]  O'Sullivan, C.K. Aptasensors as the future of biosensing? Anal. Bioanal. Chem. 2002, 372, 44–48.
[28]  Lee, J.F.; Stovall, G.M.; Ellington, A.D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 2006, 10, 282–289.
[29]  Bartlett, J.M.S.; Stirling, D. A short history of the polymerase chain reaction. Meth. Mol. Biol. 2003, 226, 3–6.
[30]  Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822.
[31]  Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510.
[32]  Mallikaratchy, P.; Stahelin, R.V.; Cao, Z.; Cho, W.; Tan, W. Selection of DNA ligands for protein kinase C-δ. Chem. Commun. 2006, 3229–3231.
[33]  Martin, J.A.; Parekh, P.; Kim, Y.; Morey, T.E.; Sefah, K.; Gravenstein, N.; Dennis, D.M.; Tan, W. Selection of an aptamer antidote to the anticoagulant drug Bivalirudin. PLoS One 2013, 8, e57341.
[34]  Gopinath, S.C.B. Methods developed for SELEX. Anal. Bioanal. Chem. 2007, 387, 171–182.
[35]  Zhang, P.; Zhao, N.; Zeng, Z.; Chang, C.-C.; Zu, Y. Combination of an aptamer probe to CD4 and antibodies for multicolored cell phenotyping. Am. J. Clin. Pathol. 2010, 134, 586–593.
[36]  Zhang, P.; Zhao, N.; Zeng, Z.; Feng, Y.; Tung, C.-H.; Chang, C.-C.; Zu, Y. Using an RNA aptamer probe for flow cytometry detection of CD30-expressing lymphoma cells. Lab. Invest. 2009, 89, 1423–1432.
[37]  Parekh, P.; Kamble, S.; Zhao, N.; Zeng, Z.; Portier, B.P.; Zu, Y. Immunotherapy of CD30-expressing lymphoma using a highly stable ssDNA aptamer. Biomaterials 2013, 34, 8909–8917.
[38]  Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066.
[39]  Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780.
[40]  Küppers, R. The biology of Hodgkin's lymphoma. Nat. Rev. Cancer 2008, 9, 15–27.
[41]  Tzankov, A.; Bourgau, C.; Kaiser, A.; Zimpfer, A.; Maurer, R.; Pileri, S.A.; Went, P.; Dirnhofer, S. Rare expression of T-cell markers in classical Hodgkin's lymphoma. Mod. Pathol. 2005, 18, 1542–1549.
[42]  Horie, R.; Watanabe, T. CD30: Expression and function in health and disease. Semin. Immunol. 1998, 10, 457–470.
[43]  Smith, C.A.; Gruss, H.-J.; Davis, T.; Anderson, D.; Farrah, T.; Baker, E.; Sutherland, G.R.; Brannan, C.I.; Copeland, N.G.; Jenkins, N.A.; et al. CD30 antigen, a marker for Hodgkin's lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 1993, 73, 1349–1360.
[44]  Stein, H.; Mason, D.; Gerdes, J.; O'Connor, N.; Wainscoat, J.; Pallesen, G.; Gatter, K.; Falini, B.; Delsol, G.; Lemke, H.; et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: Evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985, 66, 848–858.
[45]  Chiarle, R.; Podda, A.; Prolla, G.; Gong, J.; Thorbecke, G.J.; Inghirami, G. CD30 in normal and neoplastic cells. Clin. Immunol. 1999, 90, 157–164.
[46]  Willenbrock, K.; Kuppers, R.; Renné, C.; Brune, V.; Eckerle, S.; Weidmann, E.; Brauninger, A.; Hansmann, M.-L. Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical Hodgkin's lymphoma. Haematologica 2006, 91, 596–604.
[47]  Zuker, M. Calculating nucleic acid secondary structure. Curr. Opin. Struct. Biol. 2000, 10, 303–310.
[48]  Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415.
[49]  Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; de Vos, S.; et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 2012, 30, 2183–2189.
[50]  Zaer, F.S.; Braylan, R.C.; Zander, D.S.; Iturraspe, J.A.; Almasri, N.M. Multiparametric flow cytometry in the diagnosis and characterization of low-grade pulmonary mucosa-associated lymphoid tissue lymphomas. Mod. Pathol. 1998, 11, 525–532.
[51]  Fromm, J.R.; Thomas, A.; Wood, B.L. Flow cytometry can diagnose classical Hodgkin lymphoma in lymph nodes with high sensitivity and specificity. Am. J. Clin. Pathol. 2009, 131, 322–332.
[52]  Hegde, U.; Filie, A.; Little, R.F.; Janik, J.E.; Grant, N.; Steinberg, S.M.; Dunleavy, K.; Jaffe, E.S.; Abati, A.; Stetler-Stevenson, M. High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: The role of flow cytometry versus cytology. Blood 2005, 105, 496–502.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133