全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Temporal and Spatial Properties of a Yeast Multi-Cellular Amplification System Based on Signal Molecule Diffusion

DOI: 10.3390/s131114511

Keywords: microbial biosensor, yeast, alpha (α)–factor, fluorescence, immobilization, agarose, modular signaling/amplification system

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on the spatial and temporal signaling properties of a yeast pheromone-based cell communication and amplifier system. It utilizes the Saccharomyces cerevisiae mating response pathway and relies on diffusion of the pheromone α–factor as key signaling molecule between two cell types. One cell type represents the α–factor secreting sensor part and the other the reporter part emitting fluorescence upon activation. Although multi-cellular signaling systems promise higher specificity and modularity, the complex interaction of the cells makes prediction of sensor performance difficult. To test the maximum distance and response time between sensor and reporter cells, the two cell types were spatially separated in defined compartments of agarose hydrogel (5 ′ 5 mm) and reconnected by diffusion of the yeast pheromone. Different ratios of sensor to reporter cells were tested to evaluate the minimum amount of sensor cells required for signal transduction. Even the smallest ratio, one α–factor-secreting cell to twenty reporter cells, generated a distinct fluorescence signal. When using a 1:1 ratio, the secreted pheromone induced fluorescence in a distance of up to four millimeters after six hours. We conclude from both our experimental results and a mathematical diffusion model that in our approach: (1) the maximum dimension of separated compartments should not exceed five millimeters in gradient direction; and (2) the time-limiting step is not diffusion of the signaling molecule but production of the reporter protein.

References

[1]  D'Souza, S.F. Microbial biosensors. Biosens. Bioelectron. 2001, 16, 337–353.
[2]  Lei, Y.; Chen, W.; Mulchandani, A. Microbial biosensors. Anal. Chim. Acta 2006, 568, 200–210.
[3]  Baronian, K.H. The use of yeast and moulds as sensing elements in biosensors. Biosens. Bioelectron. 2004, 19, 953–962.
[4]  Radhika, V.; Milkevitch, M.; Audige, V.; Proikas-Cezanne, T.; Dhanasekaran, N. Engineered saccharomyces cerevisiae strain bios-1, for the detection of water-borne toxic metal contaminants. Biotechnol. Bioeng. 2005, 90, 29–35.
[5]  Fukuda, T.; Tsuchiya, K.; Makishima, H.; Tsuchiyama, K.; Mulchandani, A.; Kuroda, K.; Ueda, M.; Suye, S. Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and egfp. Biotechnol. J. 2010, 5, 515–519.
[6]  Bovee, T.F.; Helsdingen, R.J.; Rietjens, I.M.; Keijer, J.; Hoogenboom, R.L. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: A comparison of different compounds with both receptor types. J. Steroid Biochem. Mol. Biol. 2004, 91, 99–109.
[7]  Wolf, S.; Rataj, F.; Zierau, O.; Ostermann, K.; Diel, P.; Parr, M.K.; Vollmer, G.; Rodel, G. A novel combined approach to detect androgenic activities with yeast based assays in schizosaccharomyces pombe and saccharomyces cerevisiae. Toxicol. Lett. 2010, 199, 410–415.
[8]  Gross, A.; Rodel, G.; Ostermann, K. Application of the yeast pheromone system for controlled cell-cell communication and signal amplification. Lett. Appl. Microbiol. 2011, 52, 521–526.
[9]  Aguilar, P.S.; Engel, A.; Walter, P. The plasma membrane proteins prm1 and fig 1 ascertain fidelity of membrane fusion during yeast mating. Mol. Biol. Cell 2007, 18, 547–556.
[10]  Roberts, C.J.; Nelson, B.; Marton, M.J.; Stoughton, R.; Meyer, M.R.; Bennett, H.A.; He, Y.D.; Dai, H.; Walker, W.L.; Hughes, T.R.; et al. Signaling and circuitry of multiple mapk pathways revealed by a matrix of global gene expression profiles. Science 2000, 287, 873–880.
[11]  Segall, J.E. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl. Acad. Sci. USA 1993, 90, 8332–8336.
[12]  Moore, T.I.; Chou, C.S.; Nie, Q.; Jeon, N.L.; Yi, T.M. Robust spatial sensing of mating pheromone gradients by yeast cells. PLoS One 2008, 3, e3865.
[13]  Brent, R. Cell signaling: What is the signal and what information does it carry? FEBS Lett. 2009, 583, 4019–4024.
[14]  Williams, T.C.; Nielsen, L.K.; Vickers, C.E. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in saccharomyces cerevisiae. ACS Synth. Biol. 2013, 2, 136–149.
[15]  Xiong, J.Y.; Narayanan, J.; Liu, X.Y.; Chong, T.K.; Chen, S.B.; Chung, T.S. Topology evolution and gelation mechanism of agarose gel. J. Phys. Chem. B 2005, 109, 5638–5643.
[16]  Gietz, R.D.; Woods, R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350, 87–96.
[17]  Mumberg, D.; Muller, R.; Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156, 119–122.
[18]  Girish, V.; Vijayalakshmi, A. Affordable image analysis using NIH image/imageJ. Indian J. Cancer 2004, 41, 47.
[19]  Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, doi:10.1186/gb-2006-7-10-r100.
[20]  Crank, J. The Mathematics of Diffusion; Oxford University Press: New York, NY, USA, 1979.
[21]  Amsden, B. An obstruction-scaling model for diffusion in homogeneous hydrogels. Macromolecules 1999, 32, 874–879.
[22]  Liang, S.; Xu, J.; Weng, L.; Dai, H.; Zhang, X.; Zhang, L. Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J. Control Release 2006, 115, 189–196.
[23]  Knorre, D.A.; Smirnova, E.A.; Severin, F.F. Natural conditions inducing programmed cell death in the yeast saccharomyces cerevisiae. Biochemistry (Moscow) 2005, 70, 264–266.
[24]  Severin, F.F.; Hyman, A.A. Pheromone induces programmed cell death in S. Cerevisiae. Curr. Biol. 2002, 12, R233–R235.
[25]  Paliwal, S.; Iglesias, P.A.; Campbell, K.; Hilioti, Z.; Groisman, A.; Levchenko, A. Mapk-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 2007, 446, 46–51.
[26]  Malleshaiah, M.K.; Shahrezaei, V.; Swain, P.S.; Michnick, S.W. The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature 2010, 465, 101–105.
[27]  Wang, X.; Errede, B.; Elston, T.C. Mathematical analysis and quantification of fluorescent proteins as transcriptional reporters. Biophys. J. 2008, 94, 2017–2026.
[28]  Engberg, K.; Frank, C.W. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks. Biomed. Mater. 2011, 6, doi:10.1088/1748-6041/6/5/055006.
[29]  Weber, L.M.; Lopez, C.G.; Anseth, K.S. Effects of peg hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J. Biomed. Mater. Res. Part A 2009, 90, 720–729.
[30]  Hoffman, A.S. Hydrogels for biomedical applications. Ann. N. Y. Acad. Sci. 2001, 944, 62–73.
[31]  Wee, S.; Gombotz, W.R. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 1998, 31, 267–285.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133