全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Robust Finger Vein ROI Localization Based on Flexible Segmentation

DOI: 10.3390/s131114339

Keywords: finger vein, ROI localization, edge operator, segmentation, orientation correction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

References

[1]  Ma, L.; Tan, T.N.; Wang, Y.H.; Zhang, D.X. Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1519–1533.
[2]  Li, X.Y.; Guo, S.X. The Fourth Biometric-Vein Recognition. In Pattern Recognition Techniques, Technology and Application; InTech: Shanghai, China, 2008; pp. 537–546.
[3]  Li, S.Z. Encyclopedia of Biometrics, 1st ed. ed.; Springer-Verlag: New York, NY, USA, 2009.
[4]  Hashimoto, J.C. Finger Vein Authentication Technology Its Future. Proceeding of 2006 Symposium on VLSI Circuits, Honolulu, HI, USA, 15–17 June 2006.
[5]  Yanagawa, T.; Aoki, S.; Ohyama, T. Human Finger Vein Images are Diverse and Its Patterns are Useful for Personal Identification; Kyushu University MHF Preprint Series: Kyushu, Japan, 2007; pp. 1–7.
[6]  Yang, J.F.; Shi, Y.H. Finger-vein ROI localization and vein ridge enhancement. Pattern Recognit. Lett. 2012, 33, 1569–1579.
[7]  Yang, J.F.; Zhang, B.; Shi, Y.H. Scatting removal for finger-vein image restoration. Sensors 2012, 12, 3627–3640.
[8]  Kim, H.G. Illumination normalization for SIFT based finger vein authentication. Lect. Note. Comput. Sci. 2012, 7432, 21–30.
[9]  Kumar, A.; Zhou, Y.B. Human identification using finger images. IEEE Trans. Image Process. 2012, 21, 2228–2244.
[10]  Miura, N.; Nagasaka, A.; Miyatake, T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vision Appl. 2004, 15, 194–203.
[11]  Miura, N.; Nagasaka, A.; Miyatake, T. Extraction of Finger-Vein Patterns Using Maximum Curvature Points in Image Profiles. Proceedings of IAPR Conference on Machine Vision Applications, Tsukuba, Japan, 16–18 May 2005; pp. 347–350.
[12]  Song, W.; Kim, T.; Kim, H.C.; Choi, J.H.; Kong, H.; Lee, S. A finger-vein verification system using mean curvature. Pattern Recognit. Lett. 2011, 32, 1541–1547.
[13]  Huang, B.N.; Dai, Y.G.; Li, R.F.; Tang, D.R.; Li, W.X. Finger-Vein Authentication Based on Wide Line Detector and Pattern Normalization. Proceedings of International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 1269–1272.
[14]  Yang, J.F.; Yan, M.F. An Improved Method for Finger-Vein Image Enhancement. Proceedings of the 10th International Conference on Signal Processing, Beijing, China, 24–28 October 2010; pp. 1706–1709.
[15]  Xie, S.J.; Yang, J.C.; Yoon, S.; Lu, Y.; Park, D.S. Guided Gabor Filter for Finger Vein Pattern Extraction. Proceedings of the 8th International Conference on Signal Image Technology and Internet Based Systems, Naples, Italy, 25–29 November 2012; pp. 118–123.
[16]  Lee, E.C.; Lee, H.C.; Park, K.R. Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction. Int. J. Imaging Syst. Technol. 2009, 19, 179–186.
[17]  Bakhtiar, A.R.; Chai, W.S.; Shahrel, A.S. Finger vein recognition using local line binary pattern. Sensors 2012, 11, 11357–11371.
[18]  Wu, J.D.; Liu, C.T. Finger-vein pattern identification using principal component analysis and the neural network technique. Expert Syst. Appl. 2011, 38, 5423–5427.
[19]  Meng, X.J.; Yang, G.P.; Yin, Y.L.; Xiao, R.Y. Finger vein recognition based on local directional code. Sensors 2012, 12, 14937–14952.
[20]  Yang, G.P.; Xi, X.M.; Yin, Y.L. Finger vein recognition based on a personalized best bit map. Sensors 2012, 12, 1738–1757.
[21]  Park, Y.H.; Tien, D.N.; Lee, E.C.; Kim, S.M.; Kim, H.C. A Multimodal Biometric Recognition of Touched Fingerprint and Finger-Vein. Proceedings of 2011 International Conference on Multimedia and Signal Processing, Guilin, China, 14–15 May 2011; pp. 247–250.
[22]  Nguyen, D.T.; Park, Y.H.; Lee, H.C.; Shin, K.Y.; Kang, B.J.; Park, K.R. Combining touched fingerprint and finger-vein of a finger, and its usability evaluation. Adv. Sci. Lett. 2012, 5, 85–95.
[23]  Liu, Z.; Song, S.L. An embedded real-time finger-vein recognition system for mobile devices. IEEE Trans. Consum. Electron. 2012, 58, 522–527.
[24]  Lee, E.C.; Jung, H.; Kim, D. New finger biometric method using near infrared imaging. Sensors 2011, 11, 2319–2333.
[25]  Liu, Z.; Yin, Y.L.; Wang, H.J.; Song, S.L.; Li, Q.L. Finger vein recognition with manifold learning. J. Netw. Comput. Appl. 2010, 33, 275–282.
[26]  Xin, Y.; Liu, Z.; Zhang, H. Finger vein verification system based on sparse representation. Appl. Opt. 2012, 51, 6252–6258.
[27]  Sprawls, P. Scattered Radiation and Contrast. Available online: http://www.sprawls.org/ppmi2/SCATRAD/ (accessed on 21 June 2013).
[28]  Hartigan, J.A. Clustering Algorithms; Wiley: New York, NY, USA, 1975.
[29]  Wu, S.Q.; Jiang, L.J.; Xie, S.L.; Yeo, A.C.B. A robust method for detecting facial orientation in infrared images. Pattern Recognit. 2006, 39, 303–309.
[30]  Park, Y.H.; Park, K.R. Image quality enhancement using the direction and thickness of vein lines for finger-vein recognition. Int. J. Adv. Robot. Syst. 2012, 9, 1–10.
[31]  Ojala, T.; Pietik?inen, M.; M?enp??, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1090–1104.
[32]  Ton, B.T.; Veldhuis, R.N.J. A High Quality Finger Vascular Pattern Dataset Collected Using a Custom Designed Capturing Device. Proceeding of the International Conference on Biometrics, Madrid, Spain, 4–7 June 2013.
[33]  PKU Finger Vein Database from Peking University. Available online: http://rate.pku.edu.cn/ (accessed on 18 September 2013).
[34]  Homologous Multi-modal Traits Database (SDUMLA-HMT) from Shandong University. Available online: http://mla.sdu.edu.cn/sdumla-hmt.html (accessed on 18 September 2013).
[35]  Hong Kong Polytechnic University Finger Image Database. Available online: http://www4.comp.polyu.edu.hk/~csajaykr/fvdatabase.htm (accessed on 18 September 2013).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133