The automatic monitoring of shortenings of vertical members in high-rise buildings under construction is a challenging issue in the high-rise building construction field. In this study, a practical system for monitoring column shortening in a high-rise building under construction is presented. The proposed monitoring system comprises the following components: (1) a wireless sensing system and (2) the corresponding monitoring software. The wireless sensing system comprises the sensors and energy-efficient wireless sensing units (sensor nodes, master nodes, and repeater nodes), which automate the processes for measuring the strains of vertical members and transmitting the measured data to the remote server. The monitoring software enables construction administrators to monitor real-time data collected by the server via an Internet connection. The proposed monitoring system is applied to actual 66-floor and 72-floor high-rise buildings under construction. The system enables automatic and real-time measurements of the shortening of vertical members, which can result in more precise construction.
References
[1]
Fintel, M.; Ghosh, S.K.; Iyengar, H. Column Shortening in Tall Buildings—Prediction and Compensation; Portland Cement Association: Skokie, IL, USA, 1987.
[2]
Bast, W.D.; McDonnell, T.R.; Parker, L.; Shanks, S.P. Measured Shortening and its Effects in a Chicago High-rise Building. Proceedings of the Third Forensic Engineering Congress, San Diego, CA, USA, 19–24 October 2003.
[3]
Jayasinghe, M.T.R.; Jayasena, W.M.V.P.K. Effect of axial shortening of columns on design and construction of tall reinforced concrete buildings. Pract. Period. Struct. Des. Constr. 2004, 9, 70–78.
[4]
Fintel, M.; Khan, F.R. Effects of column creep and shrinkage in tall structures—Prediction of inelastic column shortening. ACI J. 1969, 66, 957–967.
[5]
Sharma, R.K.; Maru, S.; Nagpal, A.K. Simplified procedure for creep and shrinkage effects in reinforced concrete frames. J. Struct. Eng. 2004, 130, 1545–1552.
[6]
Moragaspitiya, P.; Thambiratnam, D.; Perera, N.; Chan, T. A numerical method to quantify differential axial shortening in concrete buildings. Eng. Struct. 2010, 32, 2310–2317.
[7]
Park, H.S. Optimal compensation of differential column shortening in high-rise buildings. Struct. Des. Tall Spec. Build. 2003, 12, 49–66.
[8]
Park, S.W.; Choi, S.W.; Park, H.S. Moving average correction method for compensation of differential column shortening in high-rise buildings. Struct. Des. Tall Spec. Build. 2013, 22, 718–728.
[9]
Baker, W.F.; Korista, D.S.; Novak, L.C.; Pawlikowski, J.; Young, B. Creep and shrinkage and the design of supertall buildings—A case study: The Burj Dubai tower. ACI Symp. Publ. 2007, 246, 133–148.
[10]
Abdelrazaq, A.K.; Baker, W.F.; Chung, K.R.; Pawlikowski, J.; Wang, I.; Yom, K.S. Integration of Design and Construction of the Tallest Building in Korea, Tower Palace III. Proceedings of CTBUH 2004 Seoul Conference, Seoul, Korea, 10–13 October 2004.
[11]
Gli?i ?, B.; Inaudi, D.; Lau, J.M.; Mok, Y.C.; Ng, C.T. Long-term Monitoring of High-rise Building Using Long-gage Fiber Optic Sensors. Proceedings of 7th International Conference on Multi-Purpose High-Rise Towers and Tall Buildings, Dubai, UAE, 10–11 December 2005.
[12]
Xia, Y.; Ni, Y.; Zhang, P.; Liao, W.; Ko, J. Stress development of a supertall structure during construction: field monitoring and numerical analysis. Comput. Aided Civ. Infrastruct. Eng. 2011, 26, 1–18.
[13]
Russell, H.G.; Larson, S.C. Thirteen years of deformations in water tower place. ACI Struct. J. 1989, 86, 182–191.
[14]
Abdelrazaq, A. Validating the dynamics of the Burj Khalifa. CTBUH J. 2011, II, 18–23.
[15]
Park, H.S.; Shin, Y.; Choi, S.W.; Kim, Y. An integrative structural health monitoring system for the local/global responses of a large-scale irregular building under construction. Sensors 2013, 13, 9085–9103.
[16]
Park, H.S.; Son, S.; Choi, S.W.; Kim, Y. Wireless laser range finder system for vertical displacement monitoring of mega-trusses during construction. Sensors 2013, 13, 5796–58103.
[17]
Choi, S.W.; Kwon, E.; Kim, Y.; Hong, K.; Park, H.S. A practical data recovery technique for long-term strain monitoring of mega columns during construction. Sensors 2013, 13, 10931–10943.
Lee, H.M.; Kim, J.M.; Sho, K.; Park, H.S. A wireless vibrating wire sensor node for continuous structural health monitoring. Smart Mater. Struct. 2010, 19, doi:10.1088/0964-1726/19/5/055004.
[20]
Wu, J.; Yuan, S.; Zhao, X.; Yin, Y.; Ye, W. A wireless sensor network node designed for exploring a structural health monitoring application. Smart Mater. Struct. 2007, 16, 1898–1906.
[21]
Yuan, S.; Lai, X.; Zhao, X.; Xu, X.; Zhang, L. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology. Smart Mater. Struct. 2006, 15, 1–8.
[22]
Sridhar, S.; Ravisankar, K.; Sreeshylam, P.; Parivallal, S.; Kesavan, K.; Murthy, S.G.N. Remote structural health monitoring of civil infrastructures—Recent trends. Int. J. COMADEM 2008, 11, 25–35.
[23]
Akkaya, K.; Younis, M. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw. 2005, 3, 325–349.
[24]
Kottapalli, V.A.; Kiremidjian, A.S.; Lynch, J.P.; Carryer, E.; Kenny, T.W.; Law, K.H.; Lei, Y. Two-tiered Wireless Sensor Network Architecture for Structural Health Monitoring. Proceedings of SPIE 10th Annual International Symposium on Smart Structures and Material, San Diego, CA, USA, 19 August 2003; pp. 8–19.
[25]
Lynch, J.P.; Loh, K.J. A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Dig. 2006, 38, 91–130.