全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A 94-GHz Millimeter-Wave Sensor for Speech Signal Acquisition

DOI: 10.3390/s131114248

Keywords: millimeter wave, speech acquisition, radar sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

High frequency millimeter-wave (MMW) radar-like sensors enable the detection of speech signals. This novel non-acoustic speech detection method has some special advantages not offered by traditional microphones, such as preventing strong-acoustic interference, high directional sensitivity with penetration, and long detection distance. A 94-GHz MMW radar sensor was employed in this study to test its speech acquisition ability. A 34-GHz zero intermediate frequency radar, a 34-GHz superheterodyne radar, and a microphone were also used for comparison purposes. A short-time phase-spectrum-compensation algorithm was used to enhance the detected speech. The results reveal that the 94-GHz radar sensor showed the highest sensitivity and obtained the highest speech quality subjective measurement score. This result suggests that the MMW radar sensor has better performance than a traditional microphone in terms of speech detection for detection distances longer than 1 m. As a substitute for the traditional speech acquisition method, this novel speech acquisition method demonstrates a large potential for many speech related applications.

References

[1]  Li, S.; Tian, Y.; Lu, G.; Zhang, Y.; Xue, H.; Wang, J.; Jing, X. A new Kind of non-acoustic speech acquisition method based on millimeter wave radaro. Prog. Electromagn. Res. 2012, 130, 17–40.
[2]  Yanagisawa, T.; Furihata, K. Pickup of speech signal utilization of vibration transducer under high ambient noise. J. Acoust. Soc. Jpn. 1975, 31, 213–220.
[3]  Shahina, A.; Yegnanarayana, B. Mapping speech spectra from throat microphone to close-speaking microphone: A neural network approach. EURASIP J. Adv. Signal Process. 2007, 2007, 1–10.
[4]  Bakhtiari, S.; Gopalsami, N.; Elmer, T.W.; Raptis, A.C. Millimeter Wave Sensor for Far-Field Standoff Vibrometry. Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, Chicago, IL, USA, 20–25 July 2008; Volume 1096, pp. 1641–1648.
[5]  Li, Z.-W. Millimeter wave radar for detecting the speech signal applications. Int. J. Infrared Millim. Wave. 1996, 17, 2175–2183.
[6]  Li, S.; Wang, J.; Niu, M.; Jing, X. The enhancement of millimeter wave conduct speech based on perceptual weighting. Prog. Electromagn. Res. B 2008, 9, 199–214.
[7]  Li, S.; Wang, J.Q.; Jing, X.J. The application of nonlinear spectral subtraction method on millimeter wave conducted speech enhancement. Math. Probl. Eng. 2010, 2010, 1–12.
[8]  Li, S.; Wang, J.Q.; Niu, M.; Liu, T.; Jing, X.J. Millimeter wave conduct speech enhancement based on auditory masking properties. Microw. Opt. Technol. Lett. 2008, 50, 2109–2114.
[9]  Holzrichter, J.F.; Burnett, G.C.; Ng, L.C. Speech articulator measurements using low power EM-wave sensors. J. Acoust. Soc. Am. 1998, 103, 622–625.
[10]  Quatieri, T.F.; Brady, K.; Messing, D.; Campbell, J.P. Exploiting nonacoustic sensors for speech encoding. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 533–544.
[11]  Jiao, M.; Lu, G.; Jing, X.; Li, S.; Li, Y.; Wang, J. A novel radar sensor for the non-contact detection of speech signals. Sensors 2010, 10, 4622–4633.
[12]  Hu, R.; Raj, B. A robust voice activity detector using an acoustic Doppler radar. IEEE Workshop Autom. Speech Recognit. Underst. 2005, 27, 319–324.
[13]  Mikhelson, I.V.; Bakhtiari, S.; Elmer, T.W., II.; Sahakian, A.V. Remote sensing of heart rate and patterns of respiration on a stationary subject using 94-GHz millimeter-wave interferometry. IEEE Trans. Biomed. Eng. 2011, 58, 1671–1677.
[14]  Bakhtiari, S.; Liao, S.; Elmer, T., II.; Gopalsami, N.S.; Raptis, A.C. A real-time heart rate analysis for a remote millimeter wave I-Q sensor. IEEE Trans. Biomed. Eng. 2011, 58, 1839–1845.
[15]  Bakhtiari, S.; Elmer, T.W., II.; Cox, N.M.; Gopalsami, N.; Raptis, A.C.; Liao, S.; Mikhelson, I.; Sahakian, A.V. Compact millimeter-wave sensor for remote monitoring of vital signs. IEEE Trans. Instrum. Meas. 2012, 61, 830–841.
[16]  Sen, A.K.; Mitra, A.; Datta, S.K.; Bera, R.; Swarup, S. Shift of millimeterwave window frequencies in relation to tropospheric radio meteorological parameters. Int. J. Infrared Millim. Waves 1992, 13, 1183–1203.
[17]  Petkie, D.T.; Benton, C.; Bryan, E. Millimeter Wave Radar for Remote Measurement of Vital Signs. Proceedings of 2009 IEEE Radar Conference, Pasadena, CA, USA, 4–8 May 2009; pp. 1–3.
[18]  Xiao, Y.; Lin, J.; Boric-Lubecke, O.; Lubecke, V.M. Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band. IEEE Trans. Microw. Theory Tech. 2006, 54, 2023–2032.
[19]  Sivannarayana, N.; Rao, K.V. I-Q imbalance correction in time and frequency domains with application to pulse doppler radar. Sadhana 1998, 23, 93–102.
[20]  Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J. Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 2004, 52, 838–848.
[21]  Wojcicki, K.; Milacic, M.; Stark, A.; Lyons, J. Exploiting conjugate symmetry of the short-time fourier spectrum for speech enhancement. IEEE Signal Process. Lett. 2008, 15, 461–464.
[22]  Obeid, D.; Sadek, S.; Zaharia, G.; Zein, G.E. Noncontact heartbeat detection at 2.4, 5.8, and 60 GHz: A comparative study. Microw. Opt. Technol. Lett. 2009, 51, 666–669.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133