Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function ?is obtained considering it as the relationship between sensor output voltage and input sensing current, [PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.
References
[1]
Oldham, K.B.; Spanier, J. The Fractional Calculus; Dover Publications: New York, NY, USA, 2006.
[2]
Oldham, K.B. A new approach to the solution of electrochemical problems involving diffusion. Anal. Chem. 1969, 41, 1904–1905.
[3]
Oldham, K.B.; Spanier, J. The replacement of Fick's law by a formulation involving semidifferentiation. J. Electroanal. Chem. Interfacial Electrochem. 1970, 26, 331–341.
Grahme, D.C. Mathematical theory of the Faradic admittance. J. Electrochem. Soc. 1952, 99, 370–385.
[6]
Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics: Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351.
[7]
Tang, C.; You, F.; Cheng, G.; Gao, D.; Fu, F.; Dong, X. Modeling the frequency dependence of the electrical properties of the live human skull. Physiol. Meas. 2009, 30, 1293–1301.
[8]
Jesus, I.; Machado, J.; Cunha, J. Fractional electrical impedances in botanical elements. J. Vib. Control 2008, 14, 1389–1402.
[9]
Biswas, K.; Sen, S.; Dutta, K.P. A constant phase element sensor for monitoring microbial growth. Sens. Actuators B 2006, 119, 186–191.
[10]
Sch?fer, I.; Krüger, K. Modeling of coils using fractional derivatives. J. Magnet. Magnet. Mater. 2006, 307, 91–99.
[11]
Steiglitz, K. An RC impedance approximation to s?1/2. IEEE Trans. Circuits Syst. 1964, 11, 160–161.
[12]
Roy, S. On the realization of a constant-argument immitance or fractional operator. IEEE Trans. Circuits Syst. 1967, 14, 264–274.
[13]
Westerlund, S. Dead matter has memory. Phys. Scripta 1991, 43, 174–179.
[14]
Krishna, B.T.; Reddy, K.V.V.S. Active and passive realization of fractance device of order 1/2. Act. Passiv. Electron. Compon. 2008, 2008, doi:10.1155/2008/369421.
Maundy, B.; Elwakil, A.S.; Gift, S. On a multivibrator that employs a fractional capacitor. J. Anal. Integr. Circuits Signal Process. 2010, 62, 99–103.
[17]
Radwan, A.G.; Soliman, A.M.; Elwakil, A.S. First order filters generalized to the fractional domain. J. Circuits Syst. Comput. 2008, 17, 55–66.
[18]
Radwan, A.G.; Elwakil, A.S.; Soliman, A.M. On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 2009, 18, 361–386.
[19]
Krishna, B.T. Studies on fractional order differentiators and integrators: A survey. Signal Process. 2011, 91, 386–426.
[20]
Martínez, R.; Bolea, Y.; Grau, A.; Martínez, H. Fractional DC/DC Converter in Solar-Powered Electrical Generation Systems 2009. Proceedings of the 14th IEEE International Conference on Emerging Technologies & Factory Automation (EFTA′09), Palma de Mallorca, Spain, 22–25 September 2009; pp. 1475–1480.
[21]
Buller, S.; Karden, E.; Kok, D.; Doncker, R. Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Trans. Ind. Appl. 2002, 38, 1622–1626.
[22]
Mauracher, P.; Karden, P.E. Dynamic modelling of lead-acid batteries using impedance spectroscopy for parameter identification. J. Power Sources 1997, 67, 69–84.
[23]
Díaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comput. 1974, 28, 185–202.
[24]
Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Springer: Dordrecht, The Netherlands, 2011.
[25]
Haykin, S.; van Been, B. Signals and Systems; John Wiley & Sons: New York, NY, USA, 2003.
[26]
Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
[27]
Ripka, P. Electrical current sensor: A review. Measur. Sci. Technol. 2010, 21, doi:10.1088/0957-0233/21/11/112001.
[28]
Meyer, M. Chances of XMR-Sensors in Automotive Applications. Proceedings of the 11th Symposium Magnetoresistive Sensors and Magnetic Systems, Wetzlar, Germany, 29–30 March 2011; pp. 107–114.
[29]
Dibbern, U. Magnetoresistive Sensors. In Sensors: Magnetic Sensors; Boll, R., Overshott, K.J., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; Volume 5.
[30]
Coehoorn, R. Giant magnetoresistance and magnetic interactions in exchange-biased spin-valves. Handb. Magnet. Mater. 2003, 15, 1–197.
[31]
Dieny, B.; Speriosu, V.S.; Gurney, B.A.; Parkin, S.S.P.; Wilhoit, D.R.; Roche, K.P.; Metin, S.; Peterson, D.T.; Nadimi, S. Spin-valve effect in soft ferromagnetic sandwiches. J. Magn. Mater. 1991, 93, 101–104.
[32]
Sánchez, J.; Ramírez, D.; Cardoso, S.; Casans, S.; Navarro, A.E.; Freitas, P.P. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor. Sensors 2011, 11, 2447–2458.
[33]
Gehanno, V.; Freitas, P.P.; Veloso, A.; Ferreira, J.; Almeida, B.; Sousa, J.B.; Kling, A.; Soares, J.C.; da Silva, M.F. Ion beam deposition of Mn-Ir spin valves. IEEE Trans. Magnet. 1999, 35, 4361–4367.
[34]
Ikeda, S.; Hayakawa, J.; Ashizawa, Y.; Lee, Y.M.; Miura, K.; Hasegawa, H.; Tsunoda, M.; Matsukura, F.; Ohno, H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 2008, 93, 082508.
[35]
Freitas, P.P.; Ferreira, R.; Cardoso, S.; Cardoso, F.; Freitas, P. Magnetoresistive sensors. J. Phys. Condens. Matter. 2007, 19, 165221.
[36]
Lopes, A.; Cardoso, S.; Ferreira, R.; Paz, E.; Francis, L.; Sánchez, J.; Ramírez, D.; Ravelo, S.I.; Freitas, P.P. MgO Magnetic Tunnel Junction Electrical Current Sensor with Integrated Ru Thermal Sensor. Proceedings of the 12th Joint MMM/Intermag Conference, Chicago, IL, USA, 14–18 January 2013.
[37]
Sánchez, J.; Ramírez, D.; Ravelo, S.I.; Lopes, A.; Cardoso, S.; Ferreira, R.; Freitas, P.P. Magnetic Tunnel Junction Current Sensor for Industrial Applications. Proceedings of the Digest of the IEEE International Magnetics Conference (Intermag), Vancouver, BC, Canada, 7–11 May 2012.
[38]
Sánchez, J.; Ramírez, D.; Ravelo, S.I.; Lopes, A.; Cardoso, S.; Ferreira, R.; Freitas, P.P. Electrical characterization of a magnetic tunnel junction current sensor for industrial applications. IEEE Trans. Magnet. 2012, 48, 2823–2826.
[39]
Sánchez, J.; Ramírez, D.; Casans, S. Extending Magnetoresistive AC Transfer Characteristics for Current Measurement. Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC08), Victoria, BC, Canada, 12–15 May 2008; pp. 305–308.