全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges

DOI: 10.3390/s131217472

Keywords: data mining, wearable sensors, healthcare, physiological sensors, health monitoring system, machine learning technique, vital signs, medical informatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems.

References

[1]  Sow, D.; Turaga, D.; Schmidt, M. Mining of Sensor Data in Healthcare: A Survey. In Managing and Mining Sensor Data; Aggarwal, C.C., Ed.; Springer: Berlin, Germany, 2013; pp. 459–504.
[2]  Suh, M.K.; Chen, C.A.; Woodbridge, J.; Tu, M.; Kim, J.; Nahapetian, A.; Evangelista, L.; Sarrafzadeh, M. A remote patient monitoring system for congestive heart failure. J. Med. Syst. 2011, 35, 1165–1179.
[3]  Youm, S.; Lee, G.; Park, S.; Zhu, W. Development of remote healthcare system for measuring and promoting healthy lifestyle. Expert Syst. Appl. 2011, 38, 2828–2834.
[4]  Malhi, K.; Mukhopadhyay, S.C.; Schnepper, J.; Haefke, M.; Ewald, H. A Zigbee-based wearable physiological parameters monitoring system. IEEE Sens. J. 2012, 12, 423–430.
[5]  Yamada, I.; Lopez, G. Wearable Sensing Systems for Healthcare Monitoring. Proceedings of the Symposium on VLSI Technology, Honolulu, HI, USA, 12–14 June 2012; pp. 5–10.
[6]  Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V.C. Body area networks: A survey. Mob. Netw. Appl. 2011, 16, 171–193.
[7]  Custodio, V.; Herrera, F.J.; López, G.; Moreno, J.I. A review on architectures and communications technologies for wearable health-monitoring systems. Sensors 2012, 12, 13907–13946.
[8]  Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. Trans. Syst. Man Cyber. Part C 2010, 40, 1–12.
[9]  Alemdar, H.; Ersoy, C. Wireless sensor networks for healthcare: A survey. Comput. Netw. 2010.
[10]  Baig, M.; Gholamhosseini, H. Smart health monitoring systems: An overview of design and modeling. J. Med. Syst. 2013, 37, 1–14.
[11]  Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 2013, 17, 579–590.
[12]  Atallah, L.; Lo, B.; Yang, G.Z. Can pervasive sensing address current challenges in global healthcare? J. Epidemiol. Glob. Health 2012.
[13]  Lara, O.D.; Labrador, M.A. A survey on ambient-assisted living tools for older adults. IEEE Commun. Surv. Tutor. 2013, 15, 1192–1209.
[14]  Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey. Proceedings of the 23th International Conference on Architecture of Computing Systems, Hannover, Germany, 22–23 February 2010; pp. 167–176.
[15]  Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154–1175.
[16]  Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012.
[17]  Chan, M.; Estéve, D.; Fourniols, J.Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156.
[18]  Bellazzi, R.; Ferrazzi, F.; Sacchi, L. Predictive data mining in clinical medicine: A focus on selected methods and applications. Wiley. Interdiscip. Rev.: Data. Min. Knowl. Discov. 2011, 1, 416–430.
[19]  Nangalia, V.; Prytherch, D.; Smith, G. Health technology assessment review: Remote monitoring of vital signs—current status and future challenges. Crit. Care 2010, 14, 1–8.
[20]  Yoo, I.; Alafaireet, P.; Marinov, M.; Pena-Hernandez, K.; Gopidi, R.; Chang, J.F.; Hua, L. Data mining in healthcare and biomedicine: A survey of the literature. J. Med. Syst. 2012, 36, 2431–2448.
[21]  Stacey, M.; McGregor, C. Temporal abstraction in intelligent clinical data analysis: A survey. Artif. Intell. Med. 2007, 39, 1–24.
[22]  Mukherjee, A.; Pal, A.; Misra, P. Data Analytics in Ubiquitous Sensor-Based Health Information Systems. Proceedings of the 2012 6th International Conference on Next Generation Mobile Applications, Services and Technologies, Paris, France, 12–14 September 2012; pp. 193–198.
[23]  Chatterjee, S.; Dutta, K.; Xie, H.Q.; Byun, J.; Pottathil, A.; Moore, M. Persuasive and Pervasive Sensing: A New Frontier to Monitor, Track and Assist Older Adults Suffering from Type-2 Diabetes. Proceedings of the 46th Hawaii International Conference on System Sciences, Grand Wailea, Maui, HI, USA, 7–10 January 2013; pp. 2636–2645.
[24]  Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15:1–15:58.
[25]  Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng. 2012, 24, 823–839.
[26]  Gaura, E.; Kemp, J.; Brusey, J. Leveraging knowledge from physiological data: On-body heat stress risk prediction with sensor networks. IEEE Trans. Biomed. Circuits Syst. 2013. in press.
[27]  Lee, K.H.; Kung, S.Y.; Verma, N. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. J. Signal Process. Syst. 2012, 69, 339–349.
[28]  Zhu, Y. Automatic detection of anomalies in blood glucose using a machine learning approach. J. Commun. Netw. 2011, 13, 125–131.
[29]  Gialelis, J.; Chondros, P.; Karadimas, D.; Dima, S.; Serpanos, D. Identifying Chronic Disease Complications Utilizing State of the Art Data Fusion Methodologies and Signal Processing Algorithms. In Wireless Mobile Communication and Healthcare; Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, M.T., Eds.; Springer: Berlin, Germany, 2012; Volume 83, pp. 256–263.
[30]  Huang, G.; Zhang, Y.; Cao, J.; Steyn, M.; Taraporewalla, K. Online mining abnormal period patterns from multiple medical sensor data streams. World Wide Web 2013, doi:10.1007/s11280-013-0203-y.
[31]  Clifton, L.; Clifton, D.A.; Pimentel, M.A.F.; Watkinson, P.J.; Tarassenko, L. Gaussian processes for personalized e-health monitoring with wearable sensors. IEEE Trans. Biomed. Eng. 2013, 60, 193–197.
[32]  Thakker, B.; Vyas, A.L. Support vector machine for abnormal pulse classification. Int. J. Comput. Appl. 2011, 22, 13–19.
[33]  Charbonnier, S.; Gentil, S. On-line adaptive trend extraction of multiple physiological signals for alarm filtering in intensive care units. Int. J. Adapt. Control. Signal. Process. 2009, 24, 382–408.
[34]  Adnane, M.; Jiang, Z.; Choi, S.; Jang, H. Detecting specific health-related events using an integrated sensor system for vital sign monitoring. Sensors 2009, 9, 6897–6912.
[35]  Adnane, M.; Jiang, Z.; Mori, N.; Matsumoto, Y. An Automated Program for Mental Stress and Apnea/Hypopnea Events Detection. Proceedings of the 7th International Workshop on Systems, Signal Processing and their Applications, Tipaza, Algeria, 9–11 May 2011; pp. 59–62.
[36]  Singh, R.R.; Conjeti, S.; Banerjee, R. An Approach for Real-Time Stress-Trend Detection Using Physiological Signals in Wearable Computing Systems for Automotive Drivers. Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, 5– October 2011; pp. 1477–1482.
[37]  Bellazzi, R.; Zupan, B. Predictive data mining in clinical medicine: Current issues and guidelines. Int. J. Med. Inform. 2008, 77, 81–97.
[38]  Silva, E.; Olivares, T.; Royo, F.; Vergara, M.A.; Analide, C. Experimental Study of the Stress Level at the Workplace Using an Smart Testbed of Wireless Sensor Networks and Ambient Intelligence Techniques. In Natural and Artificial Computation in Engineering and Medical Applications; Ferrández Vicente, J., álvarez Sánchez, J., Paz López, E., Toledo Moreo, F.J., Eds.; Springer: Berlin, Germany, 2013; Volume 7931, pp. 200–209.
[39]  Sun, F.T.; Kuo, C.; Cheng, H.T.; Buthpitiya, S.; Collins, P.; Griss, M. Activity-Aware Mental Stress Detection Using Physiological Sensors. In Mobile Computing, Applications, and Services; Gris, M., Yang, G., Eds.; Springer: Berlin, Germany, 2012; Volume 76, pp. 211–230.
[40]  Marlin, B.M.; Kale, D.C.; Khemani, R.G.; Wetzel, R.C. Unsupervised Pattern Discovery in Electronic Health Care Data Using Probabilistic Clustering Models. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, Miami, FL, USA, January 2012; pp. 389–398.
[41]  Yeh, J.Y.; Wu, T.H.; Tsao, C.W. Using data mining techniques to predict hospitalization of hemodialysis patients. Decis. Support Syst. 2011, 50, 439–448.
[42]  Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 279–286.
[43]  Sneha, S.; Varshney, U. Enabling ubiquitous patient monitoring: Model, decision protocols, opportunities and challenges. Decis. Support Syst. 2009, 46, 606–619.
[44]  Bellos, C.; Papadopoulos, A.; Rosso, R.; Fotiadis, D.I. A Support Vector Machine Approach for Categorization of Patients Suffering from Chronic Diseases. In Wireless Mobile Communication and Healthcare; Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, M.T., Eds.; Springer: Berlin, Germany, 2012; Volume 83, pp. 264–267.
[45]  Giri, D.; Rajendra Acharya, U.; Martis, R.J.; Vinitha Sree, S.; Lim, T.C.; Ahamed, T., VI; Suri, J.S. Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform. Know. Based Syst. 2013, 37, 274–282.
[46]  Bellos, C.; Papadopoulos, A.; Rosso, R.; Fotiadis, D.I. Categorization of Patients' Health Status in Copd Disease Using a Wearable Platform and Random Forests Methodology. Proceedings of the IEEE International Conference on Biomedical and Health Informatics, Shenzhen, China, 5–7 January 2012; pp. 404–407.
[47]  Bianchi, A.M.; Mendez, M.O.; Cerutti, S. Processing of signals recorded through smart devices: Sleep-quality assessment. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 741–747.
[48]  Xie, B.; Minn, H. Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 469–477.
[49]  Vu, T.H.N.; Park, N.; Lee, Y.K.; Lee, Y.; Lee, J.Y.; Ryu, K.H. Online discovery of Heart Rate Variability patterns in mobile healthcare services. J. Syst. Softw. 2010, 83, 1930–1940.
[50]  Pantelopoulos, A.; Bourbakis, N.G. Prognosis—a wearable health-monitoring system for people at risk: Methodology and modeling. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 613–621.
[51]  Frantzidis, C.A.; Bratsas, C.; Klados, M.A.; Konstantinidis, E.; Lithari, C.D.; Vivas, A.B.; Papadelis, C.L.; Kaldoudi, E.; Pappas, C.; Bamidis, P.D. On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications. Trans. Inf. Tech. Biomed. 2010, 14, 309–318.
[52]  Karlen, W.; Mattiussi, C.; Floreano, D. Sleep and wake classification with ECG and respiratory effort signals. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 71–78.
[53]  Naraharisetti, K.V.P.; Bawa, M.; Tahernezhadi, M. Comparison of Different Signal Processing Methods for Reducing Artifacts from Photoplethysmograph Signal. Proceedings of the IEEE International Conference on Electro/Information Technology, Mankato, MN, USA, 15–17 May 2011; pp. 1–8.
[54]  Ding, H.; Sun, H.; mean Hou, K. Abnormal ECG Signal Detection Based on Compressed Sampling in Wearable ECG Sensor. Proceedings of the International Conference on Wireless Communications and Signal Processing, Nanjing, China, 9–11 November 2011; pp. 1–5.
[55]  Yoon, J. Three-Tiered Data Mining for Big Data Patterns of Wireless Sensor Networks in Medical and Healthcare Domains. Proceedings of the 8th International Conference on Internet and Web Applications and Services, Rome, Italy, 23–28 June 2013; pp. 18–24.
[56]  Ahmad, N.F.; Hoang, D.B.; Phung, M.H. Robust Preprocessing for Health Care Monitoring Framework. Proceedings of the 11th International Conference on E-Health Networking, Applications and Services, Sydney, Australia, 16–18 December 2009; pp. 169–174.
[57]  Wang, W.; Wang, H.; Hempel, M.; Peng, D.; Sharif, H.; Chen, H.H. Secure stochastic ECG signals based on gaussian mixture model for e-healthcare systems. IEEE Syst. J. 2011, 5, 564–573.
[58]  Hjalmarson, A. Heart rate: An independent risk factor in cardiovascular disease. Eur. Heart J. Suppl. 2007, 9, F3–F7.
[59]  Gellish, R.; Goslin, B.; Olson, R.; McDonald, A.; Russi, G.; Moudgil, V. Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 2007, 39, 822–829.
[60]  Mao, Y.; Chen, W.; Chen, Y.; Lu, C.; Kollef, M.; Bailey, T. An Integrated Data Mining Approach to Real-Time Clinical Monitoring and Deterioration Warning. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, Beijing, China, 16–18 August 2012; pp. 1140–1148.
[61]  Apiletti, D.; Baralis, E.; Bruno, G.; Cerquitelli, T. Real-time analysis of physiological data to support medical applications. Trans. Info. Tech. Biomed. 2009, 13, 313–321.
[62]  Hu, F.; Jiang, M.; Celentano, L.; Xiao, Y. medical ad hoc sensor networks (MASN) with wavelet-based ECG data mining. Ad Hoc Robust Netw. 2008, 6, 986–1012.
[63]  Guyon, I.; Gunn, S.; Nikravesh, M.; Zadeh, L.A. Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing); Springer: Secaucus, NJ, USA, 2006.
[64]  Bellos, C.C.; Papadopoulos, A.; Rosso, R.; Fotiadis, D.I. Extraction and Analysis of Features Acquired By Wearable Sensors Network. Proceedings of 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfu, Greece, 3–5 November 2010; pp. 1–4.
[65]  Bsoul, M.; Minn, H.; Tamil, L. Apnea medassist: Real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427.
[66]  Widodo, A.; Yang, B.S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 2007, 33, 241–250.
[67]  Li, X.; Porikli, F. Human State Classification and Predication for Critical Care Monitoring by Real-Time Bio-signal Analysis. Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2460–2463.
[68]  Pradhan, G.N.; Chattopadhyay, R.; Panchanathan, S. Processing Body Sensor Data Streams for Continuous Physiological Monitoring. Proceedings of the International Conference on Multimedia Information Retrieval, Philadelphia, PA, USA, 29–31 March 2010; pp. 479–486.
[69]  Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
[70]  Paliwal, M.; Kumar, U.A. Neural networks and statistical techniques: A review of applications. Expert. Syst. Appl. 2009, 36, 2–17.
[71]  Amato, F.; López Rodríguez, A.; Pe?aandMéndez, E.M.; Vaňhara, P.; Hampl, A.; Havel, J. Artificial neural networks in medical diagnosis. J Appl. Biomed. 2013, 11, 47–58.
[72]  Li, Q.; Clifford, G.D. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiol. Meas. 2012, 33, 1491–1501.
[73]  Blonde, L.; Karter, A.J. Current evidence regarding the value of self-monitored blood glucose testing. Am. J. Med. 2005, 118, 20–26.
[74]  Jin, Z.; Sun, Y.; Cheng, A.C. Predicting Cardiovascular Disease From Real-Time Electrocardiographic Monitoring: An Adaptive Machine Learning Approach on a Cell Phone. Minneapolis, MN, USA; pp. 6889–6892.
[75]  Ordonez, P.; Armstrong, T.; Oates, T.; Fackler, J. Classification of Patients Using Novel Multivariate Time Series Representations of Physiological Data. Proceedings of the 10th International Conference on Machine Learning and Applications, Honolulu, HI, USA, 18–21 December 2011; pp. 172–179.
[76]  Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision trees: An overview and their use in medicine. J. Med. Syst. 2002, 26, 445–463.
[77]  López-Vallverdú, J.A.; Ria?o, D.; Bohada, J.A. Improving medical decision trees by combining relevant health-care criteria. Expert Syst. Appl. 2012, 39, 11782–11791.
[78]  Rabiner, L.; Juang, B.H. An introduction to hidden Markov models. IEEE ASSP Mag. 1986, 3, 4–16.
[79]  Thomas, O.; Sunehag, P.; Dror, G.; Yun, S.; Kim, S.; Robards, M.; Smola, A.; Green, D.; Saunders, P. Wearable sensor activity analysis using semi-Markov models with a grammar. Pervasive Mob. Comput. 2010, 6, 342–350.
[80]  Bae, J.; Tomizuka, M. Gait phase analysis based on a Hidden Markov Model. Mechatronics 2011, 21, 961–970.
[81]  Woodbridge, J.; Lan, M.; Sarrafzadeh, M.; Bui, A. Salient Segmentation of Medical Time Series Signals. Proceedings of the First IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology, San Jose, CA, USA, 26–29 July 2011; pp. 1–8.
[82]  Al-Hajji, A.A. Rule-Based Expert System for Diagnosis and Symptom of Neurological Disorders Neurologist Expert System (NES). Proceedings of the 1st Taibah University International Conference on Computing and Information Technology, Al-Madinah Al-Munawwarah, Saudi Arabia, 12–14 March 2012; pp. 67–72.
[83]  He, J.; Zhang, Y.; Huang, G.; Xin, Y.; Liu, X.; Zhang, H.; Chiang, S.; Zhang, H. An Association Rule Analysis Framework for Complex Physiological and Genetic Data. In Health Information Science; He, J., Liu, X., Krupinski, E., Xu, G., Eds.; Springer: Berlin, Germany, 2012; pp. 131–142.
[84]  Fayyad, U.M.; Piatetsky-Shapiro, G.; Smyth, P. From Data Mining to Knowledge Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining; Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., Eds.; American Association for Artificial Intelligence: Menlo Park, CA, USA, 1996; pp. 1–34.
[85]  Kalagnanam, J.; Henrion, M. A comparison of decision analysis and expert rules for sequential diagnosis. arXiv:1304.2362. 2013.
[86]  Zhang, Q.; Pang, C.; Mcbride, S.; Hansen, D.; Cheung, C.; Steyn, M. Towards Health Data Stream Analytics. Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia, 13–15 July 2010; pp. 282–287.
[87]  Chaovalit, P.; Gangopadhyay, A.; Karabatis, G.; Chen, Z. Discrete Wavelet transform-based time series analysis and mining. ACM Comput. Surv. 2011, 43, 6:1–6:37.
[88]  Scully, C.; Lee, J.; Meyer, J.; Gorbach, A.M.; Granquist-Fraser, D.; Mendelson, Y.; Chon, K.H. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans. Biomed. Eng. 2012, 59, 303–306.
[89]  Salem, O.; Liu, Y.; Mehaoua, A. A Lightweight Anomaly Detection Framework for Medical Wireless Sensor Networks. Proceedings of the IEEE Wireless Communications and Networking Conference, Shanghai, China, 7–10 April 2013; pp. 4358–4363.
[90]  PhysioBank Archive Index. Available online: http://www.physionet.org/physiobank/database/ (accessed on 10 November 2013).
[91]  Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, 215–220.
[92]  Patel, A.M.; Gakare, P.K.; Cheeran, A.N. Real time ECG feature extraction and arrhythmia detection on a mobile platform. Int. J. Comput. Appl. 2012, 44, 40–45.
[93]  Yang, S.; Kim, J.; Gerla, M. Clinical Quality Guaranteed Physiological Data Compression in Mobile Health Monitoring. Proceedings of the 2nd ACM International Workshop on Pervasive Wireless Healthcare, Hilton Head, SC, USA, 11–14 June 2012; pp. 51–56.
[94]  He, X.; Goubran, R.A.; Liu, X.P. Ensemble Empirical Mode Decomposition and Adaptive Filtering for ECG Signal Enhancement. Proceedings of the IEEE International Symposium on Medical Measurements and Applications Proceedings, Budapest, Hungary, 18–19 May 2012; pp. 1–5.
[95]  Ramesh, M.V.; Anu, T.A.; Thirugnanam, H. An Intelligent Decision Support System for Enhancing an m-Health Application. Proceedings of the 9th International Conference on Wireless and Optical Communications Networks, Indore, India, 20–22 September 2012; pp. 1–5.
[96]  Chen, C.M. Web-based remote human pulse monitoring system with intelligent data analysis for home health care. Expert Syst. Appl. 2011, 38, 2011–2019.
[97]  L?ngkvist, M.; Karlsson, L.; Loutfi, A. Sleep stage classification using unsupervised feature learning. Adv. Artif. Neu. Sys. 2012, 2012, 107046.
[98]  Kim, J.; Kim, J.; Lee, D.; Chung, K.Y. Ontology driven interactive healthcare with wearable sensors. Multimed. Tools Appl. 2012, doi:10.1007/s11042-012-1195-9.
[99]  Alirezaie, M.; Loutfi, A. Automatic Annotation of Sensor Data Streams Using Abductive Reasoning. Presented at the 5th International Conference on Knowledge Engineering and Ontology Development, Vilamoura, Portugal, 19–22 September 2013.
[100]  Ahmed, M.U.; Banaee, H.; Loutfi, A. Health monitoring for elderly: An application using case-based reasoning and cluster analysis. ISRN Artif. Intell. 2013, 2013, 380239.
[101]  Banaee, H.; Ahmed, M.U.; Loutfi, A. A Framework for Automatic Text Generation of Trends in Physiological Time Series Data. Proceedings of the IEEE International Conference on System, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 3876–3881.
[102]  Hunter, J.; Freer, Y.; Gatt, A.; Reiter, E.; Sripada, S.; Sykes, C. Automatic generation of natural language nursing shift summaries in neonatal intensive care: BT-Nurse. Artif. Intell. Med. 2012, 56, 157–172.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133