We propose and demonstrate the use of spatial multiplexing as a means to reduce the costs of distributed sensing networks. We propose a new scheme in which remote power-by-light switching is deployed to scan multiple branches of a distributed sensing network based on Brillouin Optical Time Domain Analysis (BOTDA) sensors. A proof-of-concept system is assembled with two 5-km sensor fiber branches that are alternatively monitored using a fast remotely controlled and optically powered optical switch. The multiplexed distributed sensor fibers were located 10 km away from the interrogation unit and a Raman pump is used to remotely power the switch. Furthermore, the deployed BOTDA unit uses an alternative configuration that can lead to simplified setups.
References
[1]
Lopez-Higuera, J.M.; Rodriguez-Cobo, L.; Quintela, A.; Cobo, A. Fiber optic sensors in structural health monitoring. J. Light. Technol. 2011, 29, 587–608.
[2]
Kalosha, V.P.; Ponomarev, E.A.; Chen, L.; Bao, L. How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses. Opt. Exp. 2006, 14, 2071–2078.
[3]
Brown, A.W.; Colpitts, B.G.; Brown, K. Distributed sensor based on dark-pulse Brillouin scattering. IEEE Photonic. Technol. Lett. 2005, 17, 1501–1503.
[4]
Li, W.; Bao, X.; Li, Y.; Chen, L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt. Exp. 2008, 16, 21616–21625.
[5]
Foaleng, S.M.; Tur, M.; Beugnot, J.C.; Thévenaz, L. High spatial and spectral resolution long range sensing using Brillouin echoes. J. Light. Technol. 2010, 28, 2993–3003.
[6]
Soto, M.A.; Bolognini, G.; Di Pasquale, F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-direction Raman amplification. Opt. Exp. 2011, 19, 4444–4457.
[7]
Zornoza, A.; Pérez-Herrera, R.A.; Elosúa, C.; Diaz, S.; Bariain, C.; Loayssa, A.; Lopez-Amo, M. Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification. Opt. Exp. 2010, 18, 9531–9541.
[8]
DeLoach, B.C.; Miller, R.C.; Kaufman, S. Sound alerter powered over an optical fiber Bell. Syst. Tech. J. 1978, 57, 3309–3316.
[9]
Pe?a, R.; Algora, C.; Matias, I.R.; López-Amo, M. Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units. Appl. Opt. 1999, 38, 2463–2466.
[10]
R?ger, M.; B?ttger, G.; Dreschmann, M.; Klamouris, C.; Huebner, M.; Bett, A.W.; Becker, J.; Freude, W.; Leuthold, J. Optically powered fiber networks. Opt. Exp. 2008, 16, 21821–21834.
[11]
Ogawa, O. A new multi-point sensing system based on optical pass switching and remote optical power supply. Proc. SPIE 2011, 7753, 775332.
[12]
Ullan, A.; Bravo, M.; Zornoza, A.; Loayssa, A.; Lopez-Amo, M.; Lopez-Higuera, J.M. BOTDA sensor network with power by light remote switching. Proc. SPIE 2012, 8421, 84218E–1.
[13]
Kwon, I.B.; Baik, S.J.; Im, K.; Yu, J.W. Development of fiber optic BOTDA sensor for intrusion detection. Sens. Actuators B Phys. 2002, 101, 77–84.
[14]
Thévenaz, L.; Le Floch, S.; Alasia, D.; Troger, J. Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing. Meas. Sci. & Tech. 2004, 15, 1519–1524.
[15]
Zornoza, A.; Loayssa, A. Low-cost Brillouin optical time domain analysis (BOTDA) distributed sensor setup. Proc. SPIE 2010, 7653, 765334.
[16]
Thévenaz, L.; Foaleng, S.; Lin, J. Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors. Opt. Exp. 2013, 21, 14017–14035.
[17]
Heras, C.; Subías, J.; Pelayo, J.; Villuendas, F.; Lopez, F. Subpicometer wavelength accuracy with gain-switched laser diode in high-resolution optical spectrometry. Opt. Exp. 2008, 16, 16658–16663.
[18]
Boyd, R.W.; Rzazewski, K. Noise initiation of stimulated Brillouin scattering. Phys. Rev. 1990, 42, 5514–5521.
[19]
Zornoza, A.; Olier, D.; Sagues, M.; Loayssa, A. Brillouin distributed sensor using RF shaping of pump pulses. Meas. Sci. Tech. 2010, 21, 094021.
[20]
Alasia, D.; Herráez, M.G.; Abrardi, L.; López, S.M.; Thévenaz, L. Detrimental effect of modulation instability on distributed optical fiber sensors. Proc. SPIE 2005, 5855, 587–590.