全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Mobile Monitoring and Embedded Control System for Factory Environment

DOI: 10.3390/s131217379

Keywords: ZigBee, sensor, Arduino, Wi-Fi, ARM, TCP/IP, FFT, NFC

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

References

[1]  Lien, C.-H.; Bai, Y.-W.; Lin, M.-B. Remote-controllable power outlet system for home power management. IEEE Trans. Consum. Electron. 2007, 53, 1634–1641.
[2]  Salehi, V.; Mohamed, A.A.; Mazloomzadeh, A.; Mohammed, O.A. Laboratory-based smart power system, part II: Control, monitoring, and protection. IEEE Trans. Smart Grid 2012, 3, 1405–1417.
[3]  Schroeder, K.; Moyne, W.; Tilbury, D.M. A Factory Health Monitor: System Identification, Process Monitoring, and Control. Proceedings of IEEE International Conference on Automation Science and Engineering, Arlington, VA, USA, 23–26 August 2008; pp. 16–22.
[4]  Branch, M.; Bradley, B. Real-Time Web-Based System Monitoring. Proceedings of Conference Record of Annual Pulp and Paper Industry Technical Conference, Appleton, WI, USA, 18–23 June 2006; pp. 1–4.
[5]  Huang, Y.P.; Young, M.S.; Tai, C.C. Noninvasive respiratory monitoring system based on the piezoceramic transducer's pyroelectric effect. Rev. Sci. Instrum. 2008, 79, doi:10.1063/1.2889398.
[6]  Hwang, I.-K.; Baek, J.-W. Wireless access monitoring and control system based on digital door lock. IEEE Trans. Consum. Electron. 2007, 53, 1724–1730.
[7]  Chen, B.-R.; Patel, S.; Buckley, T. A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors. IEEE Trans. Biomed. Eng. 2011, 58, 831–836.
[8]  Islam, K.; Shen, W.; Wang, X. Wireless sensor network reliability and security in factory automation: A survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 1243–1256.
[9]  Yi, P.; Iwayemi, A.; Zhou, C. Developing ZigBee deployment guideline under WiFi interference for smart grid applications. IEEE Trans. Smart Grid 2011, 2, 110–120.
[10]  Betta, G.; Capriglione, D.; Ferrigno, L.; Miele, G. Influence of Wi-Fi computer interfaces on measurement apparatuses. IEEE Trans. Instrum. Meas. 2010, 59, 3244–3252.
[11]  Su, S.-W.; Hong, T.-C. Radiation improvement of printed, shorted monopole antenna for USB dongle by integrating choke sleeves on the system ground. IEEE Trans. Antennas Propag. 2011, 59, 4383–4388.
[12]  Guo, Z.-W.; Chen, P.; Zhang, H. IMA: An integrated monitoring architecture with sensor networks. IEEE Trans. Instrum. Meas. 2012, 61, 1287–1295.
[13]  Chou, H.-T.; Hung, T.-M.; Wang, N.-N.; Chou, H.-H.; Tung, C.; Nepa, P. Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications. IEEE Trans. Antennas Propag. 2011, 59, 1013–1018.
[14]  Contreras, D.; Castro, M. Adaptive polling enhances quality and energy saving for multimedia over bluetooth. IEEE Commun. Lett. 2011, 15, 521–523.
[15]  Lee, A.Y.; Modarressi, A.; Mohan, S. Convergence of application services in next-generation networks. IEEE Commun. Mag. 2012, 50, 16–17.
[16]  Horvat, G.; Sostaric, D.; Zagar, D. Power Consumption and RF Propagation Analysis on ZigBee XBee Modules for ATPC. Proceedings of 35th International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech, 3–4 July 2012; pp. 222–226.
[17]  Zhuang, L.; Wang, Y.; Wang, X. Design of Mine Safety Monitoring System Based on ZigBee and Web. Proceedings of International Conference on Computer Science & Service System (CSSS), Nanjing, China, 11–13 August 2012; pp. 968–970.
[18]  Liu, Q.; Linge, N.; Lynch, V. Implementation of automatic gas monitoring in a domestic energy management system. IEEE Trans. Consum. Electron. 2012, 58, 781–786.
[19]  Caputo, D.; de Cesare, G.; Nardini, M.; Nascetti, A.; Scipinotti, R. Monitoring of temperature distribution in a thin film heater by an array of a-Si:H temperature sensors. IEEE Sens. J. 2012, 12, 1209–1213.
[20]  Bakhoum, E.G.; Cheng, M.H.M. Ultrahigh-sensitivity pressure and vibration sensor. IEEE Sens. J. 2011, 11, 3288–3294.
[21]  Almeida, C.F.M.; Kagan, N. Harmonic state estimation through optimal monitoring systems. IEEE Trans. Smart Grid 2013, 4, 467–478.
[22]  Cheong, P.; Chang, K.-F.; Lai, Y.-H.; Ho, S.-K.; Sou, I.-K.; Tam, K.-W. A ZigBee-based wireless sensor network node for ultraviolet detection of flame. IEEE Trans. Ind. Electron. 2011, 58, 5271–5277.
[23]  Jin, X.; Sarkar, S.; Ray, A.; Gupta, S.; Damarla, T. Target detection and classification using seismic and PIR sensors. IEEE Sens. J. 2012, 12, 1709–1718.
[24]  Sifuentes, E.; Casas, O.; Pallas-Areny, R. Wireless magnetic sensor node for vehicle detection with optical wake-up. IEEE Sens. J. 2011, 11, 1669–1676.
[25]  Jelicic, V.; Magno, M.; Brunelli, D.; Paci, G.; Benini, L. Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sens. J. 2013, 13, 328–338.
[26]  Macii, D.; Corradi, R.; Petri, D. A measurement-based power consumption simulator for bluetooth modules. IEEE Trans. Instrum. Meas. 2009, 58, 1592–1601.
[27]  Eun, H.; Lee, H.; Oh, H. Conditional privacy preserving security protocol for NFC applications. IEEE Trans. Consum. Electron. 2013, 59, 153–160.
[28]  Warnick, K.F.; Gottula, R.B.; Shrestha, S.; Smith, J. Optimizing power transfer efficiency and bandwidth for near field communication systems. IEEE Trans. Antennas Propag. 2013, 61, 927–933.
[29]  Kim, S.J.; Kwon, U.K.; Yoon, S.K.; Tarokh, V. Near field resonator isolation system: Theory to implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 1175–1187.
[30]  Romero, J.J. No more waiting on near field communication. IEEE Spectr. 2012, 49, 64.
[31]  Gholami, A. Sparse time-frequency decomposition and some applications. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3598–3604.
[32]  Goldin, D.; Burshtein, D. Iterative linear programming decoding of nonbinary LDPC codes with linear complexit. IEEE Trans. Inf. Theory 2013, 59, 282–300.
[33]  Bowers, K.J.; Lippert, R.A.; Dror, R.O.; Shaw, D.E. Improved twiddle access for fast fourier transforms. IEEE Trans. Signal Proc. 2010, 58, 1122–1130.
[34]  Huang, H.; Xiao, L. CORDIC based fast Radix-2 DCT algorithm. IEEE Signal Proc. Lett. 2013, 20, 483–486.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133