The ultra-high-frequency (UHF) method is used to analyze the insulation condition of electric equipment by detecting the UHF electromagnetic (EM) waves excited by partial discharge (PD). As part of the UHF detection system, the UHF sensor determines the detection system performance in signal extraction and recognition. In this paper, a UHF antenna sensor with the fractal structure for PD detection in switchgears was designed by means of modeling, simulation and optimization. This sensor, with a flat-plate structure, had two resonance frequencies of 583 MHz and 732 MHz. In the laboratory, four kinds of insulation defect models were positioned in the testing switchgear for typical PD tests. The results show that the sensor could reproduce the electromagnetic waves well. Furthermore, to optimize the installation position of the inner sensor for achieving best detection performance, the precise simulation model of switchgear was developed to study the propagation characteristics of UHF signals in switchgear by finite-difference time-domain (FDTD) method. According to the results of simulation and verification test, the sensor should be positioned at the right side of bottom plate in the front cabinet. This research established the foundation for the further study on the application of UHF technique in switchgear PD online detection.
References
[1]
Portugues, I.E.; Moore, P.J.; Glover, I.A.; Johnstone, C.; McKosky, R.H.; Goff, M.B.; van der Zel, L. RF-based partial discharge early warning system for air-insulated substations. IEEE Trans. Power Del. 2009, 24, 20–29.
[2]
Coenen, S.; Tenbohlen, S.; Markalous, S.M.; Strehl, T. Sensitivity of UHF PD measurements in power transformers. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1553–1558.
[3]
Hikita, M.; Okabe, S.; Murase, H. Cross-equipment evaluation of partial discharge measurement and diagnosis techniques in electric power apparatus for transmission and distribution. IEEE Trans. Dielectr. Electr. Insul. 2008, 14, 505–518.
[4]
Kweon, D.J.; Chin, S.B.; Kwak, H.R. The analysis of ultrasonic signals by partial discharge and noise from thetransformer. IEEE Trans. Power Del. 2005, 20, 1976–1983.
[5]
Chen, L.J.; Tsao, T.P.; Lin, Y.H. New diagnosis approach to epoxy resin transformer partial discharge using acoustic technology. IEEE Trans. Power Del. 2005, 20, 2501–2508.
[6]
Li, D.J.; Liang, J.Z.; Bu, K.W.; Yang, J.G.; Li, Y.M. Ultrasonic detection of partial discharge on typical defects in GIS (in Chinese). High Volt. Appar. 2009, 45, 72–75.
[7]
Guan, Y.G.; Qian, J.L. Practical study of radio frequency signal used in on-line PD monitoring of hv switchboard (in Chinese). High Volt. Appar. 2007, 37, 1–3.
[8]
Ren, M.; Dong, M.; Ren, Z.; Peng, H.D.; Qiu, A.C. Transient earth voltage measurement in PD detection of artificial defect models in SF6. IEEE Trans. Plasma Sci. 2012, 40, 2002–2008.
[9]
Tenbohlen, S.; Denissov, D.; Hoek, S.M.; Markalous, S.M. Partial discharge measurement in the ultra high frequency (UHF) range. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1544–1552.
[10]
Li, T.H.; Rong, M.Z.; Zheng, C.; Wang, X.H. Development simulation and experiment study on UHF partial discharge sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430.
[11]
Hoshino, T.; Kato, K.; Hayakawwa, N. A novel technique for detecting electromagnetic wave caused by partial discharge in GIS. IEEE Trans. Power Del. 2001, 16, 545–551.
[12]
Tang, Z.G.; Li, C.R.; Cheng, X.; Wang, W.; Li, J.Z.; Li, J. Partial discharge location in power transformers using wideband RF detection. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1193–1199.
[13]
Hikita, M.; Ohtsuka, S.; Teshima, T.; Okabe, S.; Kaneko, S. Examination of electromagnetic mode propagation characteristics in straight and L-section GIS model using FD-TD analysis. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1477–1483.
[14]
Hoshino, T.; Maruyama, S.; Sakakibara, T. Simulation of propagating electromagnetic wave due to partial discharge in GIS using FDTD. IEEE Trans. Power Del. 2009, 24, 153–159.
[15]
Hu, X.; Judd, M.D.; Siew, W.H. A Study of PD Location Issues in GIS using FDTD Simulation. Proceedings of 45th International Universities' Power Engineering Conference, Cardiff, UK, 31 August– 3 September 2010.
[16]
Li, X.; Li, C.R.; Li, Y.S.; Wang, W.; Li, H.L. Analysis on partial discharge in GIS by FDTD method. Proc. CSEE 2005, 25, 150–155.
[17]
Judd, M.D.; Li, Y.; Hunter, B.B.I. Partial discharge monitoring for power transformers using UHF sensors part I: Sensors and signal interpretation. IEEE Electr. Insul. Mag. 2005, 21, 5–12.
[18]
Aung, M.T.; Milanvic, J.V. The Influence of transformer winding connections on the propagation of voltage sags. IEEE Trans. Power Del. 2006, 21, 262–269.
[19]
Puente-Baliarda, C.; Romeu, J.; Pous, R.; Cardama, A. On the bahavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antennas Propag. 1998, 46, 517–524.
[20]
Lee, J.H.; Kalluri, D.K. Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma. IEEE Trans. Antennas Propag. 1999, 47, 1146–1151.
[21]
Wang, F.L. Well-Chosen Cases of Applications of Condition Monitoring in Electrical Equipment (in Chinese).; China Electric Power Press: Beijing, China, 2009.