Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access—CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.
References
[1]
Doherty, J.E. Nondsestructive Evaluation. In Handbook on Experimental Mechanics, 2nd ed.; Kobayashi, A.S., Ed.; Society for Experimental Mechanics, Inc.: Bethel, CT, USA, 1987.
[2]
Arditi, D.; Gunaydin, H.M. Total quality management in the construction process. Int. J. Proj. Manage. 1997, 15, 235–243.
[3]
Aktan, A.E.; Catbas, F.N.; Grimmelsman, K.A.; Tsikos, C.J. Issues in infrastructure health monitoring for management. J. Eng. Mech. Asce. 2000, 126, 711–724.
[4]
Brownjohn, J.M.W. Structural health monitoring of civil infrastructure. Philos. T. R. Soc. A 2007, 365, 589–622.
[5]
Liu, S.C.; Tomizuka, M. Vision and Strategy for Sensors and Smart Structures Technology Research. Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 15–17 September 2003; DEStech Publication, Inc.: Lancaster, PA, USA, 2003.
[6]
Fan, W.; Qiao, P. Vibration-based damage identification methods: A review and comparative study. Struct. Health Monit. 2011, 10, 83–111.
[7]
Straser, E.G.; Kiremidjian, A.S. A Modular, Wireless Damage Monitoring System for Structures; Earthquake Engineering Center, Stanford University: Stanford, CA, USA, 1998.
[8]
Lynch, J.P.; Loh, K.J. A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Dig. 2006, 38, 91–128.
[9]
Krishnamurthy, V.; Fowler, K.; Sazonov, E. The effect of time synchronization of wireless sensors on the modal analysis of structures. Smart Mater. Struct. 2008, 17, 055018.
[10]
Qiu, Z.; Wu, J.; Yuan, S. A wireless sensor network design and evaluation for large structural strain field monitoring. Meas. Sci. Technol. 2011, 22, 075205.
[11]
Jang, S.; Sim, S.H.; Jo, H.; Spencer, B.F. Full-scale experimental validation of decentralized damage identification using wireless smart sensors. Smart Mater. Struct. 2012, 21, 115019.
[12]
Park, H.S.; Shin, Y.; Choi, S.W.; Kim, Y. An integrative structural health monitoring system for the local/global responses of a large-scale irregular building under construction. Sensors 2013, 13, 9085–9103.
Park, K.T.; Kim, S.H.; Park, H.S.; Lee, K.W. The determination of bridge displacement using measured acceleration. Eng. Struct. 2005, 27, 371–378.
[15]
Bao, C.; Hao, H.; Li, Z. Vibration-based structural health monitoring of offshore pipelines: Numerical and experimental study. Struct. Control Health Monit. 2013, 20, 769–788.
[16]
Kim, J.T.; Ho, D.D.; Nguyen, K.D.; Hong, D.S.; Shin, S.W.; Yun, C.B.; Shinozuka, M. System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network. Smart Struct. Syst. 2013, 11, 533–553.
[17]
Park, H.S.; Lee, H.M.; Adeli, H.; Lee, I. A new approach for health monitoring of structures: Terrestrial laser scanning. Comput. Aided Civ. Inf. 2007, 22, 19–30.
[18]
Adewuyi, A.P.; Wu, Z.S.; Serker, N.H.M.K. Assessment of vibration-based damage identification methods using displacement and distributed strain measurements. Struct. Health Monit. 2009, 8, 443–461.
[19]
Rodrigues, C.; Felix, C.; Figueiras, J. Fiber-optic-based displacement transducer to measure bridge deflections. Struct. Health Monit. 2011, 10, 147–156.
[20]
Moschas, F.; Stiros, S. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng. Struct. 2011, 33, 10–17.
[21]
Ye, X.W.; Ni, Y.Q.; Wai, T.T.; Wong, K.Y.; Zhang, X.M.; Xu, F. A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification. Smart Struct. Syst. 2013, 12, 363–379.
[22]
Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg gratings in structural health monitoring—Present status and applications. Sens. Actuators A: Phys. 2008, 147, 150–164.
[23]
Chacón, R.; Guzmán, F.; Mirambell, E.; Real, E.; O?ate, E. Wireless sensor networks for strain monitoring during steel bridges launching. Struct. Health Monit. 2009, 8, 195–205.
[24]
Adewuyi, A.P.; Wu, Z.S. Modal macro-strain flexibility methods for damage localization in flexural structures using long-gauge FBG sensors. Struct. Control .Health Monit. 2010, 18, 341–360.
[25]
Jo, H.; Park, J.W.; Spencer, B.F.; Jung, H.J. Develoment of high-sensitivity wireless strain sensor for structural health monitoring. Smart Struct. Syst. 2013, 11, 477–496.
[26]
Kim, Y.S.; Sung, H.J.; Kim, H.W.; Kim, J.M. Monitoring of tension force and load transfer of groundanchor by using optical FBG sensors embedded tendon. Smart Struct. Syst. 2011, 7, 303–317.
[27]
Li, H.N.; Li, D.S.; Song, G.B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657.
[28]
Park, H.S.; Jung, S.M.; Lee, H.M.; Kwon, Y.H.; Seo, J.H. Analytical models for assessment of the safety of multi-span steel beams based on average strains from long gage optic sensors. Sens. Actuat. A Phys. 2007, 137, 6–12.
[29]
Park, H.S.; Jung, H.S.; Kwon, Y.H.; Seo, J.H. Mathematical models for assessment of the safety of steel beams based on average strains from long gage optic sensors. Sens. Actuat. A: Phys. 2006, 125, 109–113.
[30]
Deng, L.; Cai, C.S. Applications of fiber optic sensors in civil engineering. Struct. Eng. Mech. 2007, 25, 577–596.
[31]
Pang, C.; Yu, M.; Gupta, A.K.; Bryden, K.M. Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks. Smart Struct. Syst. 2013, 12, 23–29.
[32]
Coutts, D.R.; Wang, J.; Cai, J.G. Monitoring and analysis of results for two strutted deep excavations using vibrating wire strain gauges. Tunn. Undergr. Sp. Tech. 2001, 16, 87–92.
[33]
Yu, F.; Gupta, N. An efficient model for improving performance of vibrating-wire instruments. Measurement 2005, 37, 278–283.
[34]
Lee, H.M.; Kim, J.M.; Sho, K.; Park, H.S. A wireless vibrating wire sensor node for continuous structural health monitoring. Smart Mater. Struct. 2010, 19, 055004.
[35]
Lee, H.M.; Park, H.S. Measurement of maximum strain of steel beam structures based on average strains from vibrating wire strain gages. Exp. Tech. 2013, 37, 23–29.
[36]
Bourquin, F.; Joly, M. A magnet-based vibrating wire sensor: Design and simulation. Smart Mater. Struct. 2005, 14, 247–256.
[37]
Neild, S.A.; Williams, M.S.; McFadden, P.D. Development of a vibrating wire strain gauge for measuring small strains in concrete beams. Strain 2005, 41, 3–9.
[38]
Sreeshylam, P.; Ravisankar, K.; Parivallal, S.; Kesavan, K.; Sridhar, S. Condition monitoring of prestressed concrete structures using vibrating wire sensors. Int. J. Comadem 2008, 11, 46–54.
[39]
Xia, Y.; Ni, Y.Q.; Zhang, P.; Liao, W.Y.; Ko, J.M. Stress development of a supertall structure during construction: Field monitoring and numerical analysis. Comput. Aided Civ. Inf. 2011, 26, 542–559.
[40]
Choi, S.W.; Kwon, E.; Kim, Y.; Hong, K.; Par, H.S. A practical data recovery technique for long-term strain monitoring of mega columns during construction. Sensors 2013, 13, 10931–10943.
[41]
Choi, S.W.; Kim, Y.; Kim, J.M.; Park, H.S. Field monitoring of column shortenings in a high-rise building during construction. Sensors 2013, 13, 14321–14338.
[42]
Viterbi, A.J. CDMA: Principles of Spread Spectrum Communication; Addison-Wesley: Reading, MA, USA, 1995.
[43]
System, M.U.S. Available online: http://en.midasuser.com/ (accessed on 4 October 2013).