While photosystem II (PSII) of plants utilizes light for photosynthesis, part of the absorbed energy may be reverted back and dissipated as long-term fluorescence (delayed fluorescence or DF). Because the generation of DF is coupled with the processes of forward photosynthetic activities, DF contains the information about plant physiological states and plant-environment interactions. This makes DF a potentially powerful biosensing mechanism to measure plant photosynthetic activities and environmental conditions. While DF has attracted the interest of many researchers, some aspects of it are still unknown because of the complexity of photosynthetic system. In order to provide a holistic picture about the usefulness of DF, it is meaningful to summarize the research on DF applications. In this short review, available literature on applications of DF from PSII is summarized.
Voet, D.; Voet, J. Biochemistry; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004.
[3]
Renger, G. Model for molecular mechanism of photosynthetic oxygen evolution. FEBS Lett. 1977, 81, 223–228.
[4]
James, P.M.; Gascon, J.A.; Batista, V.S.; Brudvig, G.W. The mechanism of photosynthetic water splitting. Photochem. Photobiol. Sci. 2005, 4, 940–949.
[5]
Ducruet, J.M. Chlorophyll thermoluminescence of leaf discs: Simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. In J. Exp. Bot.; 2003; Volume 54, pp. 2419–2430.
[6]
Zakir'Yanov, F.K.; Kukushkin, A.K.; Soldatova, Y.A. Theoretical study of delayed fluorescence of chlorophyll in the leaves of higher plants. Biophysics 1994, 39, 713–720.
[7]
Goltsev, V.; Yordanov, I. Mathematical model of prompt and delayed chlorophyll fluorescence induction kinetics. Photosynthetica 1997, 33, 571–586.
[8]
Allen, J.P.; Williams, J.C.; Graige, M.S.; Paddock, M.L.; Labahn, A.; Feher, G.; Okamura, M.Y. Free energy dependence of the direct charge recombination from the primary and secondary quinones in reaction centers. Rhodobacter sphaeroides. Photosynth. Res. 1998, 55, 227–233.
[9]
Xu, Q.; Gunner, M.R. Temperature dependence of the free energy, enthalpy, and entropy of P+QA- charge recombination in Rhodobacter sphaeroides R-26 reaction centers. J. Phys. Chem. B 2000, 104, 8035–8043.
[10]
Rappaport, F.; Cuni, A.; Xiong, L.; Sayre, R.; Lavergne, J. Charge recombination and thermoluminescence in photosystem II. Biophys. J 2005, 88, 1948–1958.
[11]
Bolhar-Nordenkampf, H.R.; Long, S.P.; Baker, N.R.; Oquist, G.; Schreiber, U.; Lechner, E.G. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 1989, 3, 497–514.
[12]
Krause, G.H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Biol. 1991, 42, 313–349.
[13]
Mohammed, G.H.; Binder, W.D.; Gillies, S.L. Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation. Scand. J. For. Res. 1995, 10, 383–410.
DeEll, J.R.; Toivonen, P.M.A. Practical Applications of Chlorophyll Fluorescence in Plant Biology; Kluwer Academic Publishers: London, UK, 2003.
[16]
Goltsev, V.; Zaharieva, I.; Chernev, P.; Strasser, R. Delayed chlorophyll fluorescence as a monitor for physiological state of photosynthetic apparatus. Biotechnol. Biotechnol. Equip. 2009, 23, 452–457.
[17]
Akita, S.; Yano, A.; Ishii, H.; Satoh, C.; Akai, N.; Nakata, M. Delayed fluorescence spectra of intact leaves photoexcited by sunlight measured with a multichannel Fourier-transform chemiluminescence spectrometer. Chem. Phys. Lett. 2013, 574, 120–123.
[18]
Lavorel, J. Luminescence. In Bioenergetics of Photosynthesis; Academic Press: New York, NY, USA, 1975; pp. 223–317.
[19]
Amesz, J.; van Gorkom, H.J. Delayed fluorescence in photosynthesis. Annu. Rev. Plant Physiol. 1978, 29, 47–66.
[20]
Malkin, S. Delayed Luminescence. In Photosynthesis I. Photosynthetic Electron Transport and Photophosphorilation; Trebst, A., Avron, M., Eds.; Academic Press: New York, NY, USA, 1979; pp. 473–491.
[21]
Lavorel, J.; Lavergne, J.; Etienne, A.L. A reflection of several problems of luminescence in photosynthetic systems. Photobiochem. Photobiophys. 1982, 3, 287–314.
[22]
Jursinic, P. Delayed Fluorescence: Current Concepts and Status. In Light Emission by Plants and Bacteria; Govindjee, A.J., Fork, D.J., Eds.; Academic Press: Orlando, FL, USA, 1986; pp. 291–328.
[23]
Radenovic, C.; Markovic, D.; Jeremic, M. Delayed chlorophyll fluorescence in plant models. Photosynthetica 1994, 30, 1–24.
[24]
Tyystjarvi, E.; Vass, I. Light Emission as a Probe of Charge Separation and Recombination in the Photosynthetic Apparatus: Relation of Prompt Fluorescence to Delayed Light Emission and Thermoluminescence. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 363–388.
[25]
Goltsev, V.; Chernev, P.; Zaharieva, I.; Lambrev, P.; Strasser, R.J. Kinetics of delayed chlorophyll a fluorescence registered in milliseconds time range. Photosynth. Res. 2005, 84, 209–215.
[26]
Govindjee; Jursinic, P.A. Photosynthesis and Fast Changes in Light Emission by Green Plants. Photochem. Photobiol. Rev. 1979, 4, 125–205.
[27]
Brizhik, L.; Musumeci, F.; Scordino, A.; Triglia, A. The soliton mechanism of the delayed luminescence of biological systems. Europhys. Lett. 2000, 52, doi:10.1209/epl/i2000-00429-5.
[28]
Scordino, A.; Triglia, A.; Musumeci, F. Analogous features of delayed luminescence from Acetabularia acetabulum and some solid state systems. J. Photochem. Photobiol. B Biol. 2000, 56, 181–186.
[29]
Stacy, W.T.; Mar, T.; Swenberg, C.E. An analysis of a triplet exciton model for the delayed light in chlorella. Photochem. Photobiol. 1971, 14, 197–219.
[30]
Sonneveld, A.; Duysens, L.N.M.; Moerdijk, A. Magnetic field-induced increase in chlorophyll a delayed fluorescence of photosystem II: A 100- to 200-ns component between 4.2 and 300 K. Proc. Natl. Acad. Sci. USA 1980, 77, 5889–5893.
[31]
Rutherford, A.W.; Inoue, Y. Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proc. Natl. Acad. Sci. USA 1984, 81, 1107–1111.
[32]
Rappaport, F.; Guergova-Kuras, M.; Nixon, P.J.; Diner, B.A.; Lavergne, J. Kinetic and pathways of charge recombination in photosystem II. Biochemistry 2002, 41, 8518–8527.
[33]
Goltsev, V.; Zaharieva, I.; Lambrev, P.; Yordanov, I.; Strasser, R. Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation. J. Theor. Biol. 2003, 225, 171–183.
[34]
Zaharieval, I.; Goltsev, V. Advances on photosystem II investigation by measurement of delayed chlorophyll fluorescence by a phosphoroscopic method. Photochem. Photobiol. 2003, 77, 292–298.
[35]
Brizhik, L.; Musumeci, F.; Scordino, A.; Tedesco, M.; Triglia, A. Nonlinear dependence of the delayed luminescence yield on the intensity of irradiation in the framework of a correlated soliton model. Phys. Rev. E 2003, 67, doi:10.1103/PhysRevE.67.021902.
[36]
Guo, Y.; Tan, J. A kinetic model structure for delayed fluorescence from plants. Biosystems 2009, 95, 98–103.
[37]
Lambrev, P.; Goltsev, V. Temperature affects herbicide-sensitivity of pea plants. Bulg. J. Plant Physiol. 1999, 25, 54–66.
[38]
Ciardi, M.T.; Piletska, E.V. Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices; Springer Science + Business Media: New York, NY, USA, 2006.
[39]
Turzó, K.; Laczkó, G.; Filus, Z.; Marói, P. Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophys. J. 2000, 79, 14–25.
[40]
Wang, C.; Xing, D.; Chen, Q. A novel method for measuring photosynthesis using delayed fluorescence of chloroplast. Biosens. Bioelectron. 2004, 20, 454–459.
[41]
Zrimec, A.; Drinovec, L.; Berden-Zrimec, M. Influence of chemical and physical factors on long-term delayed fluorescence in Dunaliella tertiolecta. Electromagn. Biol. Med. 2005, 24, 309–318.
[42]
Berden-Zrimec, M.; Drinovec, L.; Molinari, I.; Zrimec, A.; Umani, S.F.; Monti, M. Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. J. Photochem. Photobiol. B Biol. 2008, 92, 13–18.
[43]
Field, C.B.; Ball, J.T.; Berry, J.A. Photosynthesis: Principles and Field Techniques. In Plant Physiological Ecology; Pearcy, R.W., Ehleringer, J., Mooney, H.A., Rundel, P.W., Eds.; Chapman and Hall: London, UK, 1989; pp. 209–253.
[44]
Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiol. Photosynth. 1994, 100, 49–70.
[45]
Wang, J.; Xing, D.; Zhang, L.; Jia, L. A new principle photosynthesis capacity biosensor based on quantitative measurement of delayed fluorescence in vivo. Biosens. Bioelectron. 2007, 22, 2861–2868.
[46]
Zhang, L.; Xing, D.; Wang, J. A non-invasive and real-time monitoring of the regulation of photosynthetic metabolism biosensor based on measurement of delayed fluorescence in vivo. Sensors 2007, 7, 52–66.
[47]
Xu, W.; Li, Y. Experimental Study on Using Unsaturated Light-Induced Delayed Fluorescence to Represent Plant Photosynthetic Capacity. Proceedings of 2009 Symposium on Photonics and Optoelectronics, Wuhan, China, 14–16 August 2009; pp. 1–4.
[48]
Bjorn, C.D.; Forsberg, A.S. Imaging by delayed light emission (phytoluminography) as a method for detecting damage of the photosynthetic system. Physiol. Plant 1979, 47, 215–222.
[49]
Gould, P.D.; Diaz, P.; Hogben, C.; Kusakina, J.; Salem, S.; Hartwell, J.; Hall, A. Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J. 2009, 58, 893–901.
[50]
Kurzbaum, E.; Eckert, W.; Yacobi, Y.Z. Delayed fluorescence as a direct indicator of diurnal variation in quantum and radiant energy utilization efficiencies of phytoplankton. Photosynthetica 2007, 45, 562–567.
[51]
Wang, C.; Xing, D.; Zeng, L.; Ding, C.; Chen, Q. Effect of artificial acid rain and SO2 on characteristics of delayed light emission. Luminescence 2005, 20, 51–56.
[52]
Zhang, L.; Xing, D.; Wang, J.; Li, L. Rapid and non-invasive detection of plants senescence using a delayed fluorescence technique. Photochem. Photobiol. Sci. 2007, 6, 635–641.
[53]
Avagyan, A.B. Correlations between delayed fluorescence of chlorophyll, metabolism and yield of plants. I. Influence of fertilizers on correlations. J. Biophys. Chem. 2010, 1, 40–51.
[54]
Beardall, J.; Young, E.; Roberts, S. Approaches for determining phytoplankton nutrient limitation. Aquat. Sci. 2001, 63, 44–69.
[55]
Bürger, J.; Schmidt, W. Long term delayed luminescence: A possible fast and convenient assay for nutrition deficiencies and environmental pollution damages in plants. Plant Soil 1998, 109, 79–83.
[56]
Zhang, L.; Xing, D. Research of the Relationship Between Delayed Fluorescence and Net Photosynthesis Rate in Spinach under NaCl Stress. Proceedings of 4th International Conference on Photonics and Imaging in Biology and Medicine, Tianjin, China, 3 September 2005.
[57]
Zhang, L.; Xing, D. Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts. Photochem. Photobiol. Sci. 2008, 7, 352–360.
[58]
Mehta, P.; Kraslavsky, V.; Bharti, S.; Allakhverdiev, S.I.; Jajoo, A. Analysis of salt stress induced changes in Photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat (Triticum aestivum) leaves. J. Photochem. Photobiol. B Biol. 2011, 104, 308–313.
[59]
Velthuys, B.R.; Amesz, J. Temperature and preillumination dependence of delayed fluorescence of spinach chloroplasts. Biochem. Biophys. Acta. 1975, 376, 162–168.
[60]
Fork, D.C.; Murata, N. The effect of light intensity on the assay of the low temperature limit of photosynthesis using msec delayed light emission. Photosynth. Res. 1990, 23, 319–323.
[61]
Badretdinov, D.Z.; Baranova, E.A.; Kuznetsova, S.A.; Tuleshova, A.A.; Kukushkin, A.K. An experimental and theoretical investigation of the temperature dependence of steady-state delayed luminescence in leaves of higher plants. Biofizika 2002, 47, 876–877.
[62]
Badretdinov, D.Z.; Baranova, E.A.; Kukushkin, A.K. Study of temperature influence on electron transport in higher plants via delayed luminescence method. Exp. Theory Bioelectrochem. 2004, 63, 67–71.
[63]
Melcarek, P.K.; Brown, G.N. Effects of chill stress on prompt and delayed chlorophyll fluorescence from leaves. Plant Physiol. 1977, 60, 822–825.
[64]
Havaux, M.; Lannoye, R. Temperature dependence of delayed chlorophyll fluorescence in intact leaves of higher plants. A rapid method for detecting the phase transition of thylakoid membrane lipids. Photosynth. Res. 1983, 4, 257–263.
[65]
Abbott, J.A.; Campbell, T.A.; Massie, D.R. Delayed light emission and fluorescence responses of plants to chilling. Remote Sens. Environ. 1994, 47, 87–97.
[66]
Li, Y.; Xu, W.; Wang, J.; Xing, D. Study on the relationship between delayed fluorescence and photosynthetic capability at elevated temperature in higher plants. J. Phys. Conf. Ser. 2011, 277, 1–6.
[67]
Zeng, L.; Xing, D. Alteration in Delayed Fluorescence Characterize the Effect of Heat Stress on Plants. Proceedings of Advanced Sensor Systems and Applications II, Beijing, China, 8 November 2004; pp. 649–656.
[68]
Oukarroum, A.; Goltsev, V.; Strasser, R.J. Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. PLoS One 2013, 8, e59433.
[69]
Zhang, L.; Xing, D.; Zhou, X. A Novel Biosensor for Rapid Identification of High Temperature Resistant Species. Proceedings of Advanced Sensor Systems and Applications III, Beijing, China, 11 November 2007; pp. 683027–683027.
[70]
Zeng, L.; Xing, D. Detection System of Acid Rain Pollution Using Light-Induced Delayed Fluorescence of Plant Leaf in Vivo. Proceedings of 4th International Conference on Photonics and Imaging in Biology and Medicine, Tianjin, China, 3 September 2005.
[71]
Scordino, A.; Triglia, A.; Musumeci, F.; Grasso, F.; Rajfur, Z. Influence of the presence of atrazine in water on the in-vivo delayed luminescence of Acetabularia acetabulum. J Photochem. Photobiol. B Biol. 1996, 32, 11–17.
[72]
Guo, Y.; Wirth, B.; Tan, J. Observation of plastoquinone kinetics in photosystem II from delayed fluorescence measurements. IET Syst. Biol. 2010, 4, 90–98.
[73]
Katsumata, M.; Koike, T.; Nishikawa, M.; Kazumura, K.; Tsuchiya, H.. 2006 Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata. Water Res. 2006, 40, 3393–3400.
[74]
Li, Q.; Xing, D. Study on the effect of DCMU on photosynthesis of plant by delayed fluorescence method. Acta Laser Biol. Sin. 2006, 15, 232–235.
[75]
Guo, Y.; Tan, J. A plant-tissue-based biophotonic method for herbicide sensing. Biosens. Bioelectron. 2010, 25, 1958–1962.
[76]
Vidic, T.; Lah, B.; Berden-Zrimec, M.; Marinsek-Logar, R. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. Environ. Toxicol. 2008, 24, 472–483.
[77]
Drinovec, L.; Drobne, D.; Jerman, I.; Zrimec, A. Delayed fluorescence of lemna minor: A biomarker of the effects of copper, cadmium, and Zinc. Bull. Environ. Contam. Toxicol. 2004, 72, 896–902.
[78]
Li, Z.; Xing, F.; Xing, D. Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves. Plant Cell Physiol. 2012, 53, 1295–1309.
[79]
Scordino, A.; Musumeci, F.; Gulino, M.; Lanzanò, L.; Tudisco, S.; Sui, L.; Grasso, R.; Triglia, A. Delayed luminescence of microalgae as an indicator of metal toxicity. J. Phys. D Appl. Phys. 2008, 41, 1–7.
[80]
Razinger, J.; Drinovec, L.; Berden-Zrimec, M. Delayed fluorescence imaging of photosynthesis inhibitor and heavy metal induced stress in potato. Cent. Eur. J. Biol. 2012, 7, 531–541.
[81]
Krause, H.; Gerhardt, V. Application of delayed fluorescence of phytoplankton in limnology and oceanography. J. Lumin. 1984, 31–32, 888–891.
[82]
Gerhardt, V.; Bodemer, U. Delayed fluorescence excitation spectroscopy: A method for automatic determination of phytoplankton composition of freshwaters and sediments interstitial of algal composition of benthos. Limnologica 1998, 28, 313–322.
[83]
Prokowski, Z. The use of the delayed luminescence method for determinations of chlorophyll a concentrations in phytoplankton. Oceanol. Hydrobiol. Stud. 2009, 38, 43–49.
[84]
Wiltshire, K.H.; Harsdorf, S.; Smidt, B.; Bl?cker, G.; Reuter, R.; Schroeder, F. The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe estuary and the German Bight: A comparison of high-performance liquid chromatography, delayed fluorescence and prompt fluorescence methods. J. Exp. Mar. Biol. Ecol. 1998, 222, 113–131.
[85]
Yacobi, Y.Z.; Gerhardt, V.; Gonen-Zurgil, Y.; Sukenik, A. Delayed fluorescence excitation spectroscopy: A rapid method for qualitative and quantitative assessment of natural population of phytoplankton. Water Res. 1998, 32, 2577–2582.
[86]
Istvánovics, V.; Honti, M.; Osztoics, A.; Shafik, H.M.; Padisák, J.; Yacobi, Y.; Ecker, T.W. Continuous monitoring of phytoplankton dynamics in Lake Balaton (Hungary) using on-line delayed fluorescence excitation spectroscopy. Fresh. Biol. 2005, 50, 1950–1970.
[87]
Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436.
[88]
Guo, Y.; Tan, J. A biophotonic sensing method for plant drought stress. Sens. Actuators B. Chem. 2013, 188, 519–524.