The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.
References
[1]
Shkel, A.M. Type I and Type II micromachined vibratory gyroscopes. Aerosp. Electron. Syst. 1992, 7, 40–46.
[2]
Chikovani, V.; Okon, E.; Barbashov, A. A Set of High Accuracy Low Cost Metallic Resonator CVG. Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008.
[3]
Dzhashitov, V.E.; Pankratov, V.M. Mathematical models of the thermoelastic stress—strain state, temperature, and technological errors of a wave solid-state sensor of inertial information. J. Mach. Manufact. Reliab. 2010, 39, 248–255.
[4]
Zaman, M.F.; Sharma, A.; Ayazi, F. The resonating star gyroscope: A novel multiple-shell silicon gyroscope with sub-5 deg/hr allan deviation bias instability. IEEE Sens. J. 2009, 9, 616–624.
[5]
Wang, R.; Cheng, P.; Xie, F.; Young, D.; Hao, Z. A multiple-beam tuning-fork gyroscope with high quality factors. Sens. Actuators A Phys. 2011, 166, 22–23.
[6]
Rozelle, D.M. The Hemispherical Resonator Gyro: From Wineglass to the Planets. Proceedings of the 19th AAS/AIAA Space Flight Mechanics Meeting, Savannah, GA, USA, 8–12 February 2009.
[7]
Chikovani, V.; Yatzenko, Y.; Barbashov, A.; Kovalenko, V.; Scherban, V.; Marusyk, P. Metallic Resonator CVG Thermophysical Parameter Optimization and Temperature Test Results. Proceedings of the Symposium Gyro Technology, Stuttgart, Germany, 19–20 September 2006.
[8]
Tao, Y.; Wu, X.; Xiao, D.; Wu, Y.; Cui, H.; Xi, X.; Zhu, B. Design, analysis and experiment of a novel ring vibratory gyroscope. Sens. Actuators A Phys. 2011, 168, 286–299.
[9]
Dhandole, S.D.; Modak, S.V. Review of Vibro-Acoustics Analysis Procedures for Prediction of Low Frequency Noise Inside a Cavity. Proceedings of the Conference & Exposition on Structural Dynamics, Orlando, FL, USA, 19–22 February 2007.
[10]
Li, Y. The patch effect on the vibro-acoustic coupling of an irregular enclosure backed with a PZT-bonded panel. Smart Mater. Struct. 2011, 20, 1–9.
[11]
Hirsekorna, M.; Delsanto, P.P. Elastic wave propagation in locally resonant sonic material: Comparison between local interaction simulation approach and modal analysis. J. Appl. Phys. 2006, 99, 124912.
[12]
Fritze, D.; Marburg, S.; Hardtke, H.-J. Elastic wave propagation in locally resonant sonic material: FEM–BEM-coupling and structural—Acoustic sensitivity analysis for shell geometries. Magn. Reson. Mater. Phy. 2009, 22, 353–364.
[13]
Nortona, G.V.; Werby, M.F. A numerical technique to describe acoustical scattering and propagation from an object in a waveguide. J. Appl. Phys. 1991, 70, 4101–4112.
[14]
Durant, C.; Robert, G. Vibroacoustic response of a thin cylindrical shell excited by a turbulent internal flow: Comparison between numerical prediction and experimentation. J. Sound Vib. 2000, 229, 1115–1155.
Ahn, C.G.; Choi, H.G.; Lee, H.M. Structural-acoustic coupling analysis of two cavities connected by boundary structures and small holes. Trans. ASME 2005, 127, 566–574.
[17]
Roth, G. Simulation of the Effects of Acoustic Noise on MEMS Gyroscopes. MS.c Dissertation, Auburn University, Tuscaloosa, AL, USA, 2009.
[18]
Kanani, B. Operating Principles of the Monolithic Cylinder Gyroscope. Proceedings of the 2004 IEEE Ultrasonics Symposium, Ferroelectrics, Frequency Control Joint 50th Anniversary Conference, Montreal, QC, Canada, 24–27 August 2004.
[19]
Vibrating Structure Gyroscope. Available online: http://en.wikipedia.org/wiki/Vibrating_structure_gyroscope (accessed on 20 June 2013).
[20]
Watson, W.S. Vibratory gyro skewed pick-off and driver geometry. J. Micro. Mach. 2010, 4, 171–179.
[21]
Lynch, D.D. Coriolis Vibratory Gyros. Proceedings of the Symposium Gyro Technology, Stuttgart, Germany, 15–16 September 1998.
[22]
Izmailov, E.A.; Kolesnik, M.M.; Osipov, A.M.; Akimov, A.V. Hemispherical resonator Gyro Technology Problems and Possible Ways of Their Solutions. Proceedings of the International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 24–26 May 1999.
[23]
Singh, A.K. Piezoelectric gyro sensor technology. Def. Sci. J. 2007, 57, 95103.
[24]
Loveday, P.W. Analysis and Compensation of Imperfection Effects in Piezoelectric Vibratory Gyroscopes. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1999.
[25]
Wu, Y.; Xiang, X.; Tao, Y.; Wu, X.; Wu, X. A study of temperature characteristics of vibration modes axes for vibratory cylinder gyroscopes. Sensors 2011, 11, 7666–7677.
[26]
Joubert, S.V.; Shatalov, M.Y.; Manzhirov, A.V. Bryan's effect and isotropic nonlinear damping. J. Sound Vib. 2013, 332, 6169–6172.
Batchelor, G.K. Introduction to Fluid Dynamics, 1st ed. ed.; Science Press: Cambridge, UK, 1967; p. p. 233.
[29]
He, L.; Zhu, H.; Qiu, X.; Du, G.A. Acoustic Theory and Engineering Application, 1st ed. ed.; Science Press: Beijing, China, 2006; pp. 250–253.
[30]
Davis, R.B. Techniques to Assess Acoustic-Structure Interaction in Liquid Rocket Engines. Ph.D. Dissertation, Duke University, Durham, NC, USA, 2008.
[31]
Chikovani, V.; Yatzenko, Y. Coriolis Force Gyroscope with High Sensitivity. U.S. Patent 0154542A1, 2010.
[32]
Xi, X.; Wu, Y.; Wu, X.; Yi, T.; Wu, X. Investigation on standing wave vibration of the imperfect resonant shell for cylindrical gyro. Sens. Actuators A Phys. 2012, 179, 70–77.
[33]
Wang, Z.; Sridhar, U.; Lin, R.M.; Lim, M.K. Structural Design for Improving the Sensitivity of a Surface Macro-Machined Vibratory Gyroscope. United States Patent 6293148B1, 2001.
[34]
IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros; The Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2004; p. p. 39.