全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

DOI: 10.3390/s131217130

Keywords: abnormal detection, optical flow, covariance matrix descriptor, online least squares one-class SVM

Full-Text   Cite this paper   Add to My Lib

Abstract:

The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

References

[1]  Suriani, N.S.; Hussain, A.; Zulkifley, M.A. Sudden event recognition: A survey. Sensors 2013, 13, 9966–9998.
[2]  Kosmopoulos, D.; Chatzis, S.P. Robust visual behavior recognition. IEEE Signal Process. Mag. 2010, 27, 34–45.
[3]  Utasi, á.; Czúni, L. Detection of unusual optical flow patterns by multilevel hidden Markov models. Opt. Eng. 2010, doi:10.1117/1.3280284.
[4]  Xiang, T.; Gong, S. Incremental and adaptive abnormal behaviour detection. Comput. Vis. Image Underst. 2008, 111, 59–73.
[5]  Kwak, S.; Byun, H. Detection of dominant flow and abnormal events in surveillance video. Opt. Eng. 2011, doi:10.1117/1.3542038.
[6]  Jiménez-Hernández, H.; González-Barbosa, J.J.; Garcia-Ramírez, T. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model. Sensors 2010, 10, 7576–7601.
[7]  Davy, M.; Desobry, F.; Gretton, A.; Doncarli, C. An online support vector machine for abnormal events detection. Signal Process. 2006, 86, 2009–2025.
[8]  Adam, A.; Rivlin, E.; Shimshoni, I.; Reinitz, D. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 555–560.
[9]  Boiman, O.; Irani, M. Detecting irregularities in images and in video. Int. J. Comput. Vis. 2007, 74, 17–31.
[10]  Piciarelli, C.; Micheloni, C.; Foresti, G.L. Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 1544–1554.
[11]  Piciarelli, C.; Foresti, G.L. On-line trajectory clustering for anomalous events detection. Pattern Recognit. Lett. 2006, 27, 1835–1842.
[12]  Calavia, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sánchez-Esguevillas, A. A semantic autonomous video surveillance system for dense camera networks in smart cities. Sensors 2012, 12, 10407–10429.
[13]  Lee, Y.S.; Chung, W.Y. Visual sensor based abnormal event detection with moving shadow removal in home healthcare applications. Sensors 2012, 12, 573–584.
[14]  Shilton, A.; Palaniswami, M.; Ralph, D.; Tsoi, A.C. Incremental training of support vector machines. IEEE Trans. Neural Netw. 2005, 16, 114–131.
[15]  Lau, K.; Wu, Q. Online training of support vector classifier. Pattern Recognit. 2003, 36, 1913–1920.
[16]  Cauwenberghs, G.; Poggio, T. Incremental and decremental support vector machine learning. Adv. Neural Inf. Process. Syst. 2000, 1, 409–415.
[17]  Diehl, C.; Cauwenberghs, G. SVM Incremental Learning, Adaptation and Optimization. Proceedings of International Joint Conference on Neural Networks (IJCNN), Portland, OR, USA, 20–24 July 2003; pp. 2685–2690.
[18]  Laskov, P.; Gehl, C.; Krüger, S.; Müller, K.R. Incremental support vector learning: Analysis, implementation and applications. J. Mach. Learn. Res. 2006.
[19]  Desobry, F.; Davy, M.; Doncarli, C. An online kernel change detection algorithm. IEEE Trans. Signal Process. 2005.
[20]  Zhang, Y.; Meratnia, N.; Havinga, P. Adaptive and Online One-Class Support Vector Machine-Based Outlier Detection Techniques for Wireless Sensor Networks. Proceedings of International Conference on Advanced Information Networking and Applications Workshops (WAINA), Bradford, UK, 26–29 May 2009; pp. 990–995.
[21]  Gómez-Verdejo, V.; Arenas-García, J.; Lazaro-Gredilla, M.; Navia-Vazquez, A. Adaptive one-class support vector machine. IEEE Trans. Signal Process. 2011.
[22]  Kivinen, J.; Smola, A.J.; Williamson, R.C. Online learning with kernels. IEEE Trans. Signal Process. 2004, 52, 2165–2176.
[23]  Tax, D. One-Class Classification. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2001.
[24]  Tax, D.M.; Duin, R.P. Support vector data description. Mach. Learn. 2004, 54, 45–66.
[25]  Noumir, Z.; Honeine, P.; Richard, C. Online One-Class Machines Based on the Coherence Criterion. Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 664–668.
[26]  Kim, P.J.; Chang, H.J.; Choi, J.Y. Fast Incremental Learning for One-Class Support Vector Classifier Using Sample Margin Information. Proceedings of the 19th International Conference on Pattern Recognition (ICPR), Tampa, FL, USA, 8–11 December 2008; pp. 1–4.
[27]  Sch?lkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471.
[28]  Suykens, J.; Lukas, L.; van Dooren, P.; de Moor, B.; Vandewalle, J. Least Squares Support Vector Machine Classifiers: A Large Scale Algorithm. Proceedings of European Conference on Circuit Theory and Design (ECCTD), Stresa, Italy, 29 August-2 September 1999; pp. 839–842.
[29]  Choi, Y.S. Least squares one-class support vector machine. Pattern Recognit. Lett. 2009, 30, 1236–1240.
[30]  Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998.
[31]  Vapnik, V.N.; Lerner, A. Pattern recognition using generalized portrait method. Autom. Remote Control 1963, 24, 774–780.
[32]  Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. Proceedings of ACM the 5th Annual Workshop on Computational Learning Theory (COLT), Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.
[33]  Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and other Kernel-Based Learning Methods; Cambridge University Press: Chambridge, UK, 2000.
[34]  Canu, S.; Grandvalet, Y.; Guigue, V.; Rakotomamonjy, A. SVM and Kernel Methods Matlab Toolbox, updated on 20 February 2008; A SVM Toolbox fully written in Matlab, even the QP solver. In Perception Systemes et Information; INSA de Rouen: Rouen, France, 2008.
[35]  Scholkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245.
[36]  Ben-Hur, A.; Horn, D.; Siegelmann, H.T.; Vapnik, V. Support vector clustering. J. Mach. Learn. Res. 2002, 2, 125–137.
[37]  Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300.
[38]  Suykens, J.; Gestel, T.V.; Brabanter, J.D.; Moor, B.D.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific: Singapore, 2002.
[39]  Honeine, P. Online kernel principal component analysis: A reduced-order model. IEEE Trans. Pattern Anal. Mack Intell. 2012, 34, 1814–1826.
[40]  Tropp, J.A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50, 2231–2242.
[41]  Richard, C.; Bermudez, J.C.M.; Honeine, P. Online prediction of time series data with kernels. IEEE Trans. Signal Process. 2009, 57, 1058–1067.
[42]  Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203.
[43]  Tuzel, O.; Porikli, F.; Meer, P. Region covariance: A fast descriptor for detection and classification. Lect. Notes Comput. Sci. 2006, 3952, 589–600.
[44]  Sch?lkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond; MIT Press: Cambridge, MA, USA, 2002.
[45]  Hall, B. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction; Springer: Berlin, Germany, 2003.
[46]  Cong, G.; Fanzhang, L.; Cheng, S. Research on Lie Group kernel learning algorithm. J. Front. Comput. Sci. Technol. 2012, 6, 1026–1038.
[47]  Detection of Events—Detection of Unusual Crowd Activity. Available online: http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi (accessed on 12 Dcember 2013).
[48]  Hoffmann, H. Kernel PCA for novelty detection. Pattern Recognit. 2007, 40, 863–874.
[49]  Cong, Y.; Yuan, J.; Liu, J. Sparse Reconstruction Cost for Abnormal Event Detection. Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25 June 2011; pp. 3449–3456.
[50]  Mehran, R.; Oyama, A.; Shah, M. Abnormal Crowd Behavior Detection Using Social Force Model. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 935–942.
[51]  Shi, Y.; Gao, Y.; Wang, R. Real-Time Abnormal Event Detection in Complicated Scenes. Proceedings of the 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 3653–3656.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133