全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Adaptation of Soil Physical Measurement Techniques for the Delineation of Mud and Lakebed Sediments at Neusiedler See

DOI: 10.3390/s131217067

Keywords: sediment profiles, mud layer delineation, shallow steppe lake, cone penetrometer, FDR, echo sounding

Full-Text   Cite this paper   Add to My Lib

Abstract:

For many water management issues of shallow lakes with non-consolidated sediments hydrographic surveys of the open water area and reed belt areas are required. In the frame of water management strategy for the steppe lake Neusiedler See, located between Austria and Hungary, a hydrographic survey was conducted. In the open water area (water depth ≥1 m) a sediment echosounder was used. To validate these measurements and to distinguish between water, mud, and sediment layers in the shallow lake and reed belt area additional measurements were needed. As no common standard methods are available yet, we developed a measurement system based on two commonly applied soil physical measurement techniques providing reproducible physical values: a capacitive sensor and a cone penetrometer combined with GNSS-positioning enable dynamic measurements of georeferenced vertical water-mud-bedsediments profiles. The system bases on site-specific calibrated sensors and allows instantaneous, in situ measurements. The measurements manifest a sharp water-mud interface by a sudden decline to smaller water content which is a function of the dielectric permittivity. A second decline indicates the transition to compacted mud. That is concurrently the density where the penetrometer starts registering significant penetration resistance. The penetrometer detects shallow lakebed-sediment layers. Within the lake survey this measurement system was successfully tested.

References

[1]  McAnally, W.H.; Asce, F.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Teeter, A. Management of fluid mud in estuaries, bays, and lakes.: IPresent state of understanding on character and behavior. J. Hydraul. Eng. ASCE 2007, 133, 9–22.
[2]  Penrose, J.D.; Siwabessy, P.J.W.; Gavrilov, A.; Parnum, I.; Hamilton, L.J.; Bickers, A.; Brooke, B.; Ryan, D.A. Acoustic Techniques for Seabed Classification. Technical Report 32; Cooperative Research Centre for Coastal Zone Estuary and Waterway Management (CRC-Coastal): Indooroopilly, QLD, Australia, 2005; p. p. 130.
[3]  Schettini, C.A.F.; Almeida, D.C.; Siegle, E.; Alencar, A.C.B. A snapshot of suspended sediment and fluid mud occurrence in a mixed-energy embayment, Tijucas Bay, Brazil. Geo Mar. Lett. 2009, 30, 47–62.
[4]  McAnally, W.H.; Teeter, A.; Schoellhamer, D.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.; et al. Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management. J. Hydraul. Eng. ASCE 2007, 133, 23–38.
[5]  Miyamoto, T.; Fukami, K.; Chikushi, J. Simultaneous measurement of soil water and soil hardness using a modified time domain reflectometry probe and a conventional cone penetrometer. Soil Use Manag. 2012, 28, 240–248.
[6]  Vaz, C.M.P.; Hopmans, J.W. Simultaneous measurement of soil penetration resistance and water content with a combined penetrometer–TDR moisture probe. Soil Sci. Soc. Am. J. 2001, 65, 4–12.
[7]  Kosugi, K.; Yamakawa, Y.; Masaoka, N.; Mizuyama, T. A combined penetrometer-moisture probe for surveying soil properties of natural hillslopes. Vadose Zone J. 2009, 8, doi:10.2136/vzj2008.0033.
[8]  Eijkelkamp. Penetrologger Operating Instructions; Eijkelkamp: Giesbeek, The Netherlands, 2010.
[9]  Leica Geosystem A. Leica GPS1200+ Series High Performance GNNS System; Leica Geosystem: Heerbrugg, Switzerland, 2008.
[10]  Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric loss and calibration of the hydra probe soil water sensor. Vadose Zone J. 2005, 4, doi:10.2136/vzj2004.0148.
[11]  Stenvens? Water Monitoring System, Inc. . Users Manual 92915; Stenvens? Water Monitoring System, Inc.: Portland, OR, USA, 2007; pp. 1–63.
[12]  Seyfried, M.S.; Grant, L.E. Temperature effects on soil dielectric properties measured at 50 MHz. Vadose Zone J. 2007, 6, doi:10.2136/vzj2006.0188.
[13]  Loiskandl, W.; Buchan, G.; Sokol, W.; Novak, V.; Himmelbauer, M. Calibrating electromagnetic short soil water sensors. J. Hydrol. Hydromech. 2010, 58, 114–125.
[14]  American Society of Agricutlural Engineers. Soil Cone Penetrometer. In ASAE Standards, Engineering Pratices, and Data (ASAE S313.2); ASAE, Ed.; American Society of Agricutlural Engineers. Soil Cone Penetrometer: St. Joseph, MI, USA, 1994; p. p. 687.
[15]  Bengough, A.G.; Mullins, C.E. Mechanical impedance to root growth: A review of experimental techniques and root growth responses. J. Soil Sci. 1990, 41, 341–358.
[16]  Tekin, Y.; Kul, B.; Okursoy, R. Sensing and 3D mapping of soil compaction. Sensors 2008, 8, 3447–3459.
[17]  Topakci, M.; Unal, I.; Canakci, M.; Celik, H.K.; Karayel, D. Design of a horizontal penetrometer for measuring on-the-go soil resistance. Sensors 2010, 10, 9337–9348.
[18]  Bradford, J.M. Penetrability. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9; Klute, A., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; pp. 463–478.
[19]  Vaz, C.M.P.; Bassoi, L.H.; Hopmans, J.W. Contribution of water content and bulk density to field soil penetration resistance as measured by a combined cone penetrometer-TDR probe. Soil Tillage Res. 2001, 60, 35–42.
[20]  Bácsatyai, L.; Csaplovics, E.; Márkus, I.; Sindhuber, A. Digitale Gel?ndemodelle des Neusiedler See-Beckens. In Wissenschaftliche Arbeiten aus dem Burgenland Band 97; Burgenl?ndisches Landesmuseum (Amt der Bgld. Landesregierung): Eisenstadt, Austria, 1997.
[21]  Csaplovics, E. Die land- und seeseitige Ausdehung des Schilfgürtels des Neusiedler Sees. In AGN-Forschungsbericht Neusiedler See; Burgenl?ndisches Landesmuseum (Amt der Bgld. Landesregierung): Eisenstadt, Austria, 1985.
[22]  Soja, G.; Züger, J.; Knoflacher, M.; Kinner, P.; Soja, A.-M. Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl). J. Hydrol. 2013, 480, 115–124.
[23]  Bellingham, K. The Stevens Hydra Probe Inorganic Soil Calibrations; Portland, OR, USA, 2007.
[24]  D'Amboise, C.J.L. Development of Profile Measurements Using a Frequency Domain Reflectometry Sensor in a Soft Sludge and Calibration for Use in the Neusiedlersee. M.Sc. Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, June 2012.
[25]  Müllebner, C. Adaption eines Penetrologgers zur Seebodendetektierung im Neusiedlersee. M.Sc. Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, December 2012.
[26]  Heine, E.; Prokoph, A.; Kogelbauer, I.; Loiskandl, W. Hydroakustische Erfassung der Morphologie und Sedimentschichtung des Neusiedler Sees. In Internationale Geod?tische Woche Obergurgl 2013; Hanke, K., Weinold, T., Eds.; Herbert Wichmann Verlag: Obergurgl, Austria, 2013; pp. 64–75.
[27]  Sauer, A.; B?der, V. Parametric Sub-Bottom Profiling in (Extremely) Shallow Lakes. Proceedings of the 5th Workshop “Seabed Acoustics”, Rostock, Germany, 17–18 November 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133