全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Instability of Contact Resistance in MEMS and NEMS DC Switches under Low Force: the Role of Alien Films on the Contact Surface

DOI: 10.3390/s131216360

Keywords: MEMS, NEMS, contact instability, alien film, XPS, trap-assisted tunneling

Full-Text   Cite this paper   Add to My Lib

Abstract:

The metal contact is one of the most crucial parts in ohmic-contact microelectromechanical (MEMS) switches, as it determines the device performance and reliability. It has been observed that there is contact instability when the contact force is below a threshold value (minimum contact force). However, there has been very limited knowledge so far about the unstable electrical contact behavior under low contact force. In this work, the instability of Au-Au micro/nano-contact behavior during the initial stage of contact formation is comprehensively investigated for the first time. It has been found that the alien film on the contact surface plays a critical role in determining the contact behavior at the initial contact stage under low contact force. A strong correlation between contact resistance fluctuation at the initial contact stage and the presence of a hydrocarbon alien film on the contact surface is revealed. The enhancement of contact instability due to the alien film can be explained within a framework of trap-assisted tunneling.

References

[1]  Rebeiz, G.M.; Muldavin, J.B. RF MEMS switches and switch circuits. IEEE Microw. Mag. 2001, 2, 59–71.
[2]  Rebeiz, G.M. RF MEMS: Theory, Design and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003.
[3]  Majumder, S.; McGruer, N.E.; Adams, G.G.; Zavracky, P.M.; Morrison, R.H.; Krim, J. Study of contacts in an electrostatically actuated microswitch. Sens. Actuat. A 2001, 93, 19–26.
[4]  Patton, S.T.; Zabinski, J.S. Effects of dielectric charging on fundamental forces and reliability in capacitive microelectromechanical systems radio frequency switch contacts. J. Appl. Phys. 2006, 99.
[5]  Mardivirin, D.; Pothier, A.; Crunteanu, A.; Vialle, B.; Blondy, P. Charging in dielectricless capacitive RF-MEMS switches. IEEE Trans. Microw. Theory Techn. 2009, 57, 231–236.
[6]  Kwon, H.; Choi, D.J.; Park, J.H.; Lee, H.C.; Park, Y.H.; Kim, Y.D.; Nam, H.J.; Joo, Y.C.; Bu, J.U. Contact Materials and Reliability for High Power RF-MEMS Switches. Proceedings of the IEEE 20th Annual International Conference on Micro Electro Mechanical Systems, Hyogo, Japan, 21–25 January 2007; pp. 382–385.
[7]  Chuang, W.C.; Lee, H.L.; Chang, P.Z.; Hu, Y.C. Review on the modeling of electrostatic MEMS. Sensors 2010, 10, 6149–6171.
[8]  Sadek, K.; Lueke, J.; Moussa, W. A coupled field multiphysics modeling approach to investigate RF MEMS switch failure modes under various operational conditions. Sensors 2009, 9, 7988–8006.
[9]  Coutu, R.A.; Reid, J.R.; Cortez, R.; Strawser, R.E.; Kladitis, P.E. Microswitches with sputtered Au, AuPd, Au-on-AuPt, and AuPtCu alloy electric contacts. IEEE Trans. Compon. Packag. Technol. 2006, 29, 341–349.
[10]  Yang, Z.; Lichtenwalner, D.; Morris, A.; Menzel, S.; Nauenheim, C.; Gruverman, A.; Krim, J.; Kingon, A.I. A new test facility for efficient evaluation of MEMS contact materials. J. Micromech. Microeng. 2007, 17, 1788–1795.
[11]  Dickrell, D.J.; Dugger, M.T. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact. IEEE Trans. Compon. Packag. Technol. 2007, 30, 75–80.
[12]  Chen, L.; Lee, H.; Guo, Z.J.; McGruer, N.E.; Gilbert, K.W.; Mall, S.; Leedy, K.D.; Adams, G.G. Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J. Appl. Phys. 2007, 102.
[13]  Hyman, D.; Mehregany, M. Contact physics of gold microcontacts for MEMS switches. IEEE Trans. Compon. Packag. Technol. 1999, 22, 357–364.
[14]  Kwon, H.; Jang, S.S.; Park, Y.H.; Kim, T.S.; Kim, Y.D.; Nam, H.J.; Joo, Y.C. Investigation of the electrical contact behaviors in Au-to-Au thin-film contacts for RF MEMS switches. J. Micromech. Microeng. 2008, 18, doi:10.1088/0960-1317/18/10/105010.
[15]  Patton, S.T.; Zabinski, J.S. Fundamental studies of Au contacts in MEMS RF switches. Tribol. Lett. 2005, 18, 215–230.
[16]  Kogut, L.; Komvopoulos, K. Electromechanically induced transition from nonohmic to ohmic behavior at contact interfaces. Appl. Phys. Lett. 2004, 84, 4842–4844.
[17]  Tringe, J.W.; Uhlman, T.A.; Oliver, A.C.; Houston, J.E. A single asperity study of Au/Au electrical contacts. J. Appl. Phys. 2003, 93, 4661–4669.
[18]  Sakata, M.; Komura, Y.; Seki, T.; Kobayashi, K.; Sano, K.; Horiike, S. Micromachined Relay Which Utilizes Single Crystal Silicon Electrostatic Actuator. Proceedings of 12th IEEE Internatioanl Conference on Micro Electro Mechanical Systems, Orlando, FL, USA, 21 January 1999; pp. 21–24.
[19]  Czaplewski, D.A.; Patrizi, G.A.; Kraus, G.M.; Wendt, J.R.; Nordquist, C.D.; Wolfley, S.L.; Baker, M.S.; de Boer, M.P. A nanomechanical switch for integration with CMOS logic. J. Micromech. Microeng. 2009, 19, doi:10.1088/0960-1317/19/8/085003.
[20]  Vaddi, R.; Pott, V.; Chua, G.L.; Lin, J.T.M.; Kim, T.T. Design and scalability of a memory array utilizing anchor-free nanoelectromechanical nonvolatile memory device. IEEE Electron. Device Lett. 2012, 33, 1315–1317.
[21]  Holm, R. Electric Contacts: Theory and Applications; Springer: Berlin, Germany, 1967.
[22]  Smith, T. The hydrophilic nature of a clean gold surface. J. Colloid Interface Sci. 1980, 75, 51–55.
[23]  Lundstro, I.; Svensson, C. Tunneling to traps in insulators. J. Appl. Phys. 1972, 43, 5045–5047.
[24]  Kraabel, B.; Hummelen, J.C.; Vacar, D.; Moses, D.; Sariciftci, N.S.; Heeger, A.J.; Wudl, F. Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes. J. Chem. Phys. 1996, 104, 4267–4273.
[25]  Langen, R.; Chang, I.J.; Germanas, J.P.; Richards, J.H.; Winkler, J.R.; Gray, H.B. Electron tunneling in proteins: Coupling through a beta-strand. Science 1995, 268, 1733–1735.
[26]  Prigodin, V.N.; Epstein, A.J. Nature of insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers. Synth. Met. 2001, 125, 43–53.
[27]  Ohki, Y.; Fuse, N.; Arai, T. Band Gap Energies and Localized States in Several Insulating Polymers Estimated by Optical Measurements. Proceedings of 2010 Annual Report on the Electrical Insulation and Dielectric Phenomena Conference, West Lafayette, LA, USA, 17–20 October 2010; pp. 1–4.
[28]  Tu, N.R.; Kao, K.C. High-field electrical conduction in polyimide films. J. Appl. Phys. 1999, 85, 7267–7275.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133