A slim and flexible tactile sensor applicable to the interaction of human and intelligent robots is presented. In particular, a simple sensing principle for decoupling of three-dimensional force is proposed. Sensitivity of the proposed tactile sensor is tested experimentally. To improve the sensitivity of the sensor, a table-shaped sensing element was designed. Table-shaped structure can convert an external acting force into concentrated internal stress. A “triaxial force decoupling algorithm” was developed by combining two-dimensional mapping data calculated by finite element analysis. The sensor was calibrated under normal and tangential forces. The external loads applied to the sensor could be decoupled independently as a function of the strain-gauge responses.
References
[1]
Field, T. Touch in Development. In Touch; MIT Press: Cambridge, MA, USA, 2001; pp. 37–57.
[2]
Eibl-Eibesfeldt, I. Tactile Communication. In Human Ethology; Aldine de Gruyter: Hawthorne, NY, USA, 2001; pp. 430–437.
[3]
Yamaoka, F.; Kanda, T.; Ishiguro, H.; Hagita, N. How contingent should a lifelike robot be? The relationship between contingency and complexity. Connect. Sci. 2007, 19, 143–162.
[4]
Wainer, J.; Dautenhahn, K.; Robins, B.; Amirabdollahian, F. A pilot study with a novel setup for collaborative play of the humanoid robot KASPAR with children with autism. Int. J. Soc. Rob. 2013, doi:10.1007/s12369-013-0195-x.
[5]
Lum, P.S.; Burgar, C.G.; Shor, P.C.; Majmundar, M.; Loos, M.V. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002, 83, 952–959.
[6]
Yussof, H.; Ohka, M.; Suzuki, H.; Morisawa, N.; Takata, J. Tactile sensing-based control architecture in multi-fingered arm for object manipulation. Eng. Lett. 2008, 16, 236–247.
[7]
Fritzsche, M.; Elkmann, N.; Schulenburg, E. Tactile Sensing: A Key Technology for Safe Physical Human Robot Interaction. Proceedings of International Conference on Human-Robot Interaction, Lausanne, Switzerland, 8–11 March 2011; pp. 139–140.
[8]
Hager, G.D. A modular system for robust positioning using feedback from stereo vision. Trans. Rob. Autom. 1997, 13-14, 582–595.
[9]
Prats, M.; Martinet, P.; Pobil, A.P.; Lee, S. Vision/Force Control in Task-Oriented Grasping and Manipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1320–1325.
Kane, B.J.; Cutkosky, M.R.; Kovacs, G.T.A. A traction stress sensor array for use in high-resolution robotic tactile imaging. JMEMS 2000, 9, 425–434.
[12]
Mei, T.; Li, W.J.; Ge, Y.; Chen, Y.; Ni, L.; Chan, M.H. An integrated MEMS three-dimensional tactile sensor with large force range. Sens. Actuators A 2000, 80, 155–162.
[13]
Lee, M.H.; Nicholls, H.R. Tactile sensing for mechatronics—A state of the art survey. Mechatronics 1999, 9, 1–31.
[14]
Engel, J.; Chen, J.; Liu, C. Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 2003, 13, 359–366.
[15]
Cheng, M.Y.; Huang, X.H.; Ma, C.W.; Yang, Y.J. A flexible capacitive tactile sensing array with floating electrodes. J. Micromech. Microeng. 2009, 19, 115001.
[16]
Lee, H.K.; Chang, S.I.; Yoon, E. A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment. JMEMS 2006, 15, 1681–1686.
[17]
Yang, Y.J.; Cheng, M.Y.; Chang, W.Y.; Tsao, L.C.; Yang, S.A.; Shih, W.P.; Chang, F.Y.; Chang, S.H.; Fan, K.C. An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators A 2008, 143, 143–153.
[18]
Jiang, F.; Lee, G.B.; Tai, Y.C.; Ho, C.M. A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sens. Actuators A 2000, 79, 194–203.
[19]
Noda, K.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sens. Actuators A. 2006, 127, 295–301.
[20]
Sohgawa, M.; Hirashima, D.; Moriguchi, Y.; Uematsu, T.; Mito, W.; Kanashima, T.; Okuyama, M.; Noma, H. Tactile sensor array using microcantilever with nickel-chromium alloy thin film of low temperature coefficient of resistance and its application to slippage detection. Sens. Actuators A 2012, 186, 32–37.
[21]
Hasegawa, Y.; Shikida, M.; Shimizu, T.; Miyaji, T.; Sasaki, H.; Sato, K.; Itoigawa, K. A micromachined active tactile sensor for hardness detection. Sens. Actuators A 2004, 114, 141–146.
[22]
Lee, J.I.; Hida, H.; Shikida, M.; Sato, K. Microfabricated 3D Flexible Tactile Sensor with Table-Shaped Structure for Intelligent Robot Fingers. Proceedings of the IEEE International Symposium on Micro-Nano Mechatronics and Human Science, Nagoya, Japan; 2010; pp. 417–419.
[23]
Mark, J.E. Polymer Data Handbook; Oxford University Press Inc.: New York, NY, USA, 1999.
[24]
Kim, J.H.; Lee, J.I.; Lee, H.J.; Park, Y.K.; Kim, M.S.; Kang, D.I. Design of Flexible Tactile Sensor Based on Three-Component Force and its Fabrication. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain; 2005; pp. 2589–2592.
[25]
Lee, J.I.; Kim, J.H.; Choi, W.C.; Park, Y.K.; Kang, D.I. Design of a Flexible Tactile Sensor Based on Polymer Micromachining and Its Fabrication. Proceedings of the Asia-Pacific Symposium on Mass, Force and Torque, Jeju, Korea, 18–22 April 2005; pp. 269–274.
[26]
Kwon, H.J.; Choi, W.C. Design and fabrication of a flexible three-axial tactile sensor array based on polyimide micromachining. J. Microsyst. Technol. 2010, 16, 2029–2035.
[27]
Kwon, H.J.; Kim, J.H.; Choi, W.C. Development of a flexible three-axial tactile sensor array for a robotic finger. J. Microsyst. Technol. 2011, 17, 1721–1726.