Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R 2 ≥ 0.56) in the top 0–15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R 2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0–15 cm soil depths than in the 15–30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method.
References
[1]
Blackmore, B.S.; Using, Information. Technology to Improve Crop Management. Available online: ftp://129.236.34.22/pub/atiuser/roel/FROM%20HOME/paperprecisag/other%20papers/information%20technology%20and%20crop%20management.pdf (accessed on 15 November 2013).
[2]
Rossel, R.A.V.; McBratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775.
Ward, S.H. Gamma-ray spectrometry in geologic mapping and uranium exploration. Econ. Geol. 1981, 840–849.
[7]
Airborne Gamma Ray Spectrometer Surveying; Technical Reports Series No. 323; International Atomic Energy Agency: Vienna, Austria, 1991.
[8]
Taylor, M.J.; Smettem, K.R.J.; Pracilio, G.; Verboom, W.H. Relationships between soil properties and high-resolution radiometrics, central eastern Wheatbelt, Western Australia. Explor. Geophys. 2002, 33, 95–102.
[9]
Dickson, B.L.; Scott, K.M. Interpretation of aerial gamma-ray surveys—adding the geochemical factors. AGSO J. Aust. Geol. Geophys. 1997, 17, 187–200.
[10]
Wilford, J.R.; Bierwirth, P.N.; Craig, M.A. Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology. AGSO J. Aust. Geol. Geophys. 1997, 17, 201–216.
[11]
Cook, S.E.; Corner, R.J.; Groves, P.R.; Grealish, G.J. Use of airborne gamma radiometric data for soil mapping. Aust. J. Soil Res. 1996, 34, 183–194.
[12]
Wedepohl, K.H. Handbook of Geochemistry; Springer-Verlag: Berlin, Germany, 1978.
[13]
Wilford, J.; Minty, B. The use of airborne gamma-ray imagery for mapping soils and understanding landscape processes. Dev. Soil Sci. 2006, 31, 207–218.
[14]
Megumi, K.; Mamuro, T. Concentration of uranium series nuclides in soil particles in relation to their size. J. Geophys. Res. 1977, 82, 353–356.
[15]
Wong, M.T.F.; Harper, R.J. Use of on-ground gamma-ray spectrometry to measure plant-available potassium and other topsoil attributes. Aust. J. Soil Res. 1999, 37, 267–277.
[16]
Wilford, J. Airborne gamma-ray spectrometry as a tool for assessing relative landscape activity and weathering development of regolith, including soils. AGSO Res. Newslett. 1995, 22, 12–14.
[17]
Aspin, S.J.; Bierwirth, P.N. GIS Analysis of the Effects of Forest Biomass on Gamma-Radiometric Images. Proceedings of the 3rd National Forum on GIS in the Geosciences, Australian Geological Survey Organisation Record 1997/36, Canberra, Australia, 19–20 March 1997.
[18]
McKenzie, N.J.; Ryan, P.J. Spatial prediction of soil properties using environmental correlation. Geoderma 1999, 89, 67–94.
[19]
Pracilio, G.; Adams, M.L.; Smettem, K.R.J. Use of Airborne Gamma Radiometric Data for Soil Property and Crop Biomass Assessment, Northern Dryland Agricultural Region, Western Australia. Proceedings of the 4th European Conference on Precision Agriculture, Berlin, Germany, 18–21 July 2003; pp. 551–557.
[20]
Pracilio, G.; Adams, M.L.; Smettem, K.R.J.; Harper, R.J. Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry. Plant Soil 2006, 282, 67–82.
[21]
Rawlins, B.; Lark, R.; Webster, R. Understanding airborne radiometric survey signals across part of eastern England. Earth Surf. Process. Landf. 2007, 32, 1503–1515.
[22]
Rossel, R.A.V.; Taylor, H.J.; McBratney, A.B. Multivariate calibration of hyperspectral γ -ray energy spectra for proximal soil sensing. Eur. J. Soil Sci. 2007, 58, 343–353.
[23]
Hendriks, P.H.G.M.; Limburg, J.; de Meijer, R.J. Full-spectrum analysis of natural γ-ray spectra. J. Environ. Radioact. 2001, 53, 365–380.
[24]
Van Egmond, F.M.; Loonstra, E.H.; Limburg, J. Gamma Ray Sensor for Topsoil Mapping: The Mole. In Proximal Soil Sensing, 1st ed.; Rossel, R.A.V., McBratney, A.B., Minasny, B., Eds.; Springer: Berlin, Germany, 2010; pp. 323–332.
[25]
Van der Klooster, E.; van Egmond, F.M.; Sonneveld, M.P.W. Mapping soil clay contents in Dutch marine districts using gamma-ray spectrometry. Eur. J. Soil Sci. 2011, 62, 743–753.
[26]
Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Sensor data fusion to predict multiple soil properties. Precis. Agric. 2012, 13, 628–645.
[27]
Mahmood, H.S.; Bartholomeus, H.M.; Hoogmoed, W.B.; van Henten, E.J. Evaluation and implementation of vis-NIR spectroscopy models to determine workability. Soil Tillage Res. 2013, 134, 172–179.
[28]
Soil Survey Staff, Soil Survey Field and Laboratory Methods Manual, Soil Survey Investigations; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2009.
[29]
Grasty, R.L.; Glynn, J.E.; Grant, J.A. The analysis of multichannel airborne gamma-ray spectra. Geophysics 1985, 50, 2611–2620.