A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.
Friedman, M.; Dao, L. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem. 1992, 40, 419–423.
[3]
Friedman, M.; McDonald, G.; Haddon, W.F. Kinetics of acid-catalyzed hydrolysis of carbohydrate groups of potato glycoalkaloids alpha-chaconine and alpha-solanine. J. Agric. Food Chem. 1993, 41, 1397–1406.
[4]
Backleh, M.; Ekici, P.; Leupold, G.; Coelhan, M.; Parlar, H. Enrichment of the glycoalkaloids alpha-solanine and alpha-chaconine from potato juice by adsorptive bubble separation using a ph gradient. J. Sep. Sci. 2004, 27, 1042–1044.
[5]
Kenny, O.; McCarthy, C.; Brunton, N.; Hossain, M.; Rai, D.; Collins, S.; Jones, P.; Maguire, A.; O'Brien, N. Anti-inflammatory properties of potato glycoalkaloids in stimulated jurkat and raw 264.7 mouse macrophages. Life Sci. 2013, 92, 775–782.
[6]
Munari, C.C.; de Oliveira, P.F.; Leandro, L.; Pimenta, L.M.; da Silva, D.A.; Bastos, J.K.; Tavares, D.C. Anticarcinogenic potential of solanum lycocarpum fruits glycoalkaloid extract in male wistar rats. Planta Med. 2012, 78, PD21.
[7]
Yang, S.-A.; Paek, S.-H.; Kozukue, N.; Lee, K.-R.; Kim, J. A-chaconine, a potato glycoalkaloid, induces apoptosis of ht-29 human colon cancer cells through caspase-3 activation and inhibition of erk 1/2 phosphorylation. Food Chem. Toxicol. 2006, 44, 839–846.
[8]
Edwards, E.J.; Cobb, A.H. Improved high-performance liquid chromatographic method for the analysis of potato (solanum tuberosum) glycoalkaloids. J. Agric.Food Chem. 1996, 44, 2705–2709.
[9]
Shakya, R.; Navarre, D.A. Lc-ms analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (solanum tuberosum). J. Agric.Food Chem. 2008, 56, 6949–6958.
[10]
Soldatkin, A.P.; Arkhypova, V.N.; Dzyadevych, S.V.; El'skaya, A.V.; Gravoueille, J.-M.; Jaffrezic-Renault, N.; Martelet, C. Analysis of the potato glycoalkaloids by using of enzyme biosensor based on ph-isfets. Talanta 2005, 66, 28–33.
[11]
Benilova, I.V.; Soldatkin, A.P.; Martelet, C.; Jaffrezic-Renault, N. Nonfaradaic impedance probing of potato glycoalkaloids interaction with butyrylcholinesterase immobilized onto gold electrode. Electroanalysis 2006, 18, 1950–1956.
[12]
Friedman, M.; Lee, K.-R.; Kim, H.-J.; Lee, I.-S.; Kozukue, N. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J. Agric. Food Chem. 2005, 53, 6162–6169.
[13]
Xiang, C.; Zou, Y.; Sun, L.-X.; Xu, F. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubes-modified electrode. Talanta 2007, 74, 206–211.
[14]
Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 2001, 73, 915–920.
[15]
Qian, L.; Yang, X. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 2006, 68, 721–727.
[16]
Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable nadh detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 2002, 4, 743–746.
[17]
Manesh, K.M.; Santhosh, P.; Gopalan, A.I.; Lee, K.P. Electrocatalytic dioxygen reduction at glassy carbon electrode modified with polyaniline grafted multiwall carbon nanotube film. Electroanalysis 2006, 18, 1564–1571.
[18]
So, H.-M.; Won, K.; Kim, Y.H.; Kim, B.-K.; Ryu, B.H.; Na, P.S.; Kim, H.; Lee, J.-O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 2005, 127, 11906–11907.
[19]
Xiang, C.; Zou, Y.; Sun, L.-X.; Xu, F. Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem. Commun. 2008, 10, 38–41.
[20]
Lee, K.-P.; Gopalan, A.I.; Komathi, S. Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode. Sens. Actuators B: Chem. 2009, 141, 518–525.
[21]
Egawa, Y.; Seki, T.; Takahashi, S.; Anzai, J.-I. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater. Sci. Eng.: C. 2011, 31, 1257–1264.
[22]
Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y. Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc. 2009, 131, 12022–12023.
[23]
Liu, S.; Miller, B.; Chen, A. Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase. Electrochem. Commun. 2005, 7, 1232–1236.
Tanaka, T.; Matsunaga, T. Detection of HbA(1c) by boronate affinity immunoassay using bacterial magnetic particles. Biosens. Bioelectron. 2001, 16, 1089–1094.
[26]
P?ibyl, J.; Skládal, P. Quartz crystal biosensor for detection of sugars and glycated hemoglobin. Anal. Chim. Acta. 2005, 530, 75–84.
[27]
Bonini, F.; Piletsky, S.; Turner, A.P.; Speghini, A.; Bossi, A. Surface imprinted beads for the recognition of human serum albumin. Biosens. Bioelectron. 2007, 22, 2322–2328.
[28]
Lorand, J.; Edwards, J.O. Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem. 1959, 24, 769–774.
[29]
Egawa, Y.; Nina, S.; Anzai, J.-I. Effects of poly(allylamine) on the sugar-binding properties of a phenylboronic acid-appended azo dye (in Japanese). Bunseki Kagaku 2006, 55, 1003.
[30]
De Guzman, J.M.; Soper, S.A.; McCarley, R.L. Assessment of glycoprotein interactions with 4-[(2-aminoethyl) carbamoyl] phenylboronic acid surfaces using surface plasmon resonance spectroscopy. Anal. Chem. 2010, 82, 8970–8977.
[31]
Liu, S.; Du, Z.; Li, P.; Li, F. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid–diol binding. Biosens. Bioelectron 2012, 35, 443–446.
[32]
Oh, W.-K.; Jeong, Y.S.; Kim, S.; Jang, J. Fluorescent polymer nanoparticle for selective sensing of intracellular hydrogen peroxide. ACS Nano 2012, 6, 8516–8524.
[33]
Lee, K.J.; Oh, W.-K.; Song, J.; Kim, S.; Lee, J.; Jang, J. Photoluminescent polymer nanoparticles for label-free cellular imaging. Chem. Commun. 2010, 46, 5229–5231.
[34]
Harper, J.C.; Polsky, R.; Wheeler, D.R.; Lopez, D.M.; Arango, D.C.; Brozik, S.M. A multifunctional thin film au electrode surface formed by consecutive electrochemical reduction of aryl diazonium salts. Langmuir 2009, 25, 3282–3288.