A Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS) and the Resultant Hyperspectral Field Goniometer System
This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.
References
[1]
Martonchik, J.V.; Bruegge, C.J.; Strahler, A.H. A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev. 2000, 19, 9–20.
[2]
Schaepman, M. Spectrodirectional remote sensing: From pixels to processes. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 204–223.
[3]
Sandmeier, S.; Deering, D. Structure analysis and classification of boreal forests using airborne hyperspectral brdf data from ASAS. Remote Sens. Environ. 1999, 69, 281–295.
[4]
Coburn, C.A.; van Gaalen, E.; Peddle, D.R.; Flanagan, L.B. Anisotropic reflectance effects on spectral indices for estimating ecophysiological parameters using a portable goniometer system. Can. J. Remote Sens. 2010, 36, S355–S364.
[5]
Walter-Shea, E.A.; Privette, J.L.; Cornell, D.; Mesarch, M.A.; Hays, C.J. Relations between directional spectral vegetation indices and leaf area and absorbed radiation in Alfalfa. Remote Sens. Environ. 1997, 61, 162–177.
[6]
Gianelle, D.; Guastella, F. Nadir and off-nadir hyperspectral field data: Strengths and limitations in estimating grassland biophysical characteristics. Int. J. Remote Sens. 2007, 28, 1547–1560.
[7]
Deering, D.W.; Eck, T.F.; Banerjee, B. Characterization of the reflectance anisotropy of three boreal forest canopies in spring-summer. Remote Sens. Environ. 1999, 67, 205–229.
[8]
Selkowitz, D.J. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska. Remote Sens. Environ. 2010, 114, 1338–1352.
[9]
Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; United States Department of Commerce National Bureau of Standards: Washington, DC, USA, 1977.
[10]
Timmermans, J.; Ambro, G.A.; van der Tol, C.; Verhoef, W.; Su, Z. Automated directional measurement system for the acquisition of thermal radiative measurements of vegetative canopies. Sensors 2009, 9, 1409–1422.
[11]
Anderson, K.; Croft, H.; Milton, E.J.; Kuhn, N.J. A simple spectro-goniometer for collection of multiple view angle reflectance factors. Remote Sens. Lett. 2012, 3, 131–140.
[12]
Pegrum, H.; Fox, N.; Chapman, M.; Milton, E. Design and Testing A New Instrument to Measure the Angular Reflectance of Terrestrial Surfaces. International Geoscience and Remote Sensing Symposium (IGARSS 2006), Piscataway, NJ, USA, 04 August 2006; pp. 1119–1122.
[13]
Bruegge, C.J.; Helmlinger, M.C.; Conel, J.E.; Gaitley, B.J.; Abdou, W.A. PARABOLA III: A sphere-scanning radiometer for field determination of surface anisotropic reflectance functions. Remote Sens. Rev. 2000, 19, 75–94.
[14]
Sandmeier, S.; Itten, K. A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 978–986.
[15]
Schopfer, J.; Dangel, S.; Kneubühler, M.; Itten, K.I. The improved dual-view field goniometer system FIGOS. Sensors 2008, 8, 5120–5140.
[16]
Bourgeois, C.S.; Ohmura, A.; Schroff, K.; Frei, H.–J.; Calanca, P. IAC ETH goniospectrometer: a tool for hyperspectral HDRF measurements. J. Atmos. Ocean. Technol. 2006, 23, 573–584.
[17]
Suomalainen, J.; Hakala, T.; Peltoniemi, J.; Puttonen, E. Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer. Sensors 2009, 9, 3891–3907.
[18]
Painter, T.H.; Paden, B.; Dozier, J. Automated spectro-goniometer: A spherical robot for the field measurement of the directional reflectance of snow. Rev. Sci. Instrum. 2003, 74, 5179–5188.
[19]
Coburn, C.A.; Peddle, D.R. A low-cost field and laboratory goniometer system for estimating hyperspectral bidirectional reflectance. Can. J. Remote Sens. 2006, 32, 244–253.
[20]
Landis, B.; Aber, J.S. Low-cost field goniometer for multiangular reflectance measurements. Emporia State Res. Stud. 2007, 44, 1–6.
[21]
Manakos, I.; Schneider, T.; Bekakos, M.P. A mobile unit for field spectroradiometric measurements. Neural Parallel Sci. Comput. 2004, 12, 525–544.
[22]
Sandmeier, S.R. Acquisition of bidirectional reflectance factor data with field goniometers. Remote Sens. Environ. 2000, 73, 257–269.
[23]
Schneider, T.; Schopfer, J.; Oppelt, N.; Dorigo, W.; Vreeling, W.; Gege, P. GonioExp06—A Field Goniometer Intercomparison Campaign, in Support of Physical Model Inversion and Upscaling Methods for Hyperspectral, Multidirectional RS Data. In European Space Agency, (Special Publication) ESA SP-636; ESA Communication Production Office: Noordwijk, The Netherlands, 2007.
[24]
Tyc, G.; Tulip, J.; Schulten, D.; Krischke, M.; Oxfort, M. The RapidEye mission design. Acta Astronaut. 2005, 56, 213–219.
[25]
Stuffler, T.; Kaufmann, C.; Hofer, S.; F?rster, K.P.; Schreier, G.; Mueller, A.; Eckardt, A.; Bach, H.; Penné, B.; Benz, U.; et al. The EnMAP Hyperspectral Imager—An Advanced Optical Payload for Future Applications in Earth Observation Programmes: Bringing Space Closer to People. Proceedings of the 57th International Astronautical Congress (IAF) Congress, Valencia, Spain, 2–6 October 2006; pp. 115–120.
[26]
Galeazzi, C.; Sacchetti, A.; Cisbani, A.; Babini, G. The PRISMA Program. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 11 July 2008; Volume 4.
[27]
Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sens. Environ. 1998, 66, 222–233.
[28]
Sandmeier, S.R.; Middleton, E.M.; Deering, D.W.; Qin, W. The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization. J. Geophys. Res. 1999, 104, 9547–9560.
[29]
Vierling, L.A.; Deering, D.W.; Eck, T.F. Differences in arctic tundra vegetation type and phenology as seen using bidirectional radiometry in the early growing season. Remote Sens. Environ. 1997, 60, 71–82.
[30]
Solheim, I.; Engelsen, O.; Hosgood, B.; Andreoli, G. Measurement and modeling of the spectral and directional reflection properties of lichen and moss canopies. Remote Sens. Environ. 2000, 72, 78–94.
[31]
Peltoniemi, J.I.; Kaasalainen, S.; N?r?nen, J.; Rautiainen, M.; Stenberg, P.; Smolander, H.; Smolander, S.; Voipio, P. BRDF measurement of understory vegetation in pine forests: Dwarf shrubs, lichen, and moss. Remote Sens. Environ. 2005, 94, 343–354.
[32]
Pinter, P.J., JR.; Jackson, R.D.; Susan, M.M. Bidirectional reflectance factors of agricultural targets: A comparison of ground-, aircraft-, and satellite-based observations: Concident satellite, aircraft, and field measurements at the Maricopa Agricultural Center (MAC). Remote Sens. Environ. 1990, 32, 215–228.
[33]
Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42.
[34]
Heim, B.; Buchhorn, M.; Hubberten, H.-W. YAMAL2011 Expedition from 11th July to 9th September 2011—Part: AWI Data Report; Alaska Geobotany Center: Fairbanks, AK, USA, 2012.
[35]
Strauss, J.; Ulrich, M.; Buchhorn, M. Expeditions to permafrost 2012: “Alaskan North Slope/Itkillik”, “Thermokarst in Central Yakutia”, “EyeSight-NAAT-Alaska”. In Berichte zur Polar- und Meeresforschung = Reports on Polar and Marine Research; Alfred-Wegener-Inst. für Polar- und Meeresforschung: Bremerhaven, Germany, 2012.
[36]
Spectra Vista Corporation. GER 1500—User Manual: Revision 3.8; Poughkeepsie, New York, NY, USA, 2009.
Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Sensitivity analysis and quality assessment of laboratory BRDF data. Remote Sens. Environ. 1998, 64, 176–191.
[39]
Bruegge, C.; Chrien, N.; Haner, D. A Spectralon BRF data base for MISR calibration applications. Remote Sens. Environ. 2001, 77, 354–366.
[40]
K??b, A. Remote sensing of permafrost-related problems and hazards. Permafr. Periglac. Process. 2008, 19, 107–136.
[41]
Jackson, R.D.; Teillet, P.M.; Slater, P.N.; Fedosejevs, G.; Jasinski, M.F.; Aase, J.K.; Moran, M.S. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery: Concident satellite, aircraft, and field measurements at the Maricopa Agricultural Center (MAC). Remote Sens. Environ. 1990, 32, 189–202.
[42]
Küster, T. Modellierung von Getreidebestandsspektren zur Korrektur BRDF-Bedingter Einflüsse auf Vegetationsindizes im Rahmen der EnMAP-Mission. Ph.D. Thesis, Humboldt-Universit?t zu Berlin, Berlin, Germany, 2011.
Walker, D.A.; Epstein, H.E.; Romanovsky, V.E.; Ping, C.L.; Michaelson, G.J.; Daanen, R.P.; Shur, Y.; Peterson, R.A.; Krantz, W.B.; Raynolds, M.K.; et al. Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect. J. Geophys. Res. 2008, 113, doi:10.1029/2007JG000504.
[45]
Raynolds, M.K.; Walker, D.A.; Munger, C.A.; Vonlanthen, C.M.; Kade, A.N. A map analysis of patterned-ground along a North American Arctic Transect. J. Geophys. Res. 2008, 113(Issue G03S03).
[46]
Kade, A.; Walker, D.A.; Raynolds, M.K. Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the Low Arctic, Alaska. Phytocoenologia 2005, 35, 761–820.
[47]
Buchhorn, M.; Walker, D.A.; Heim, B.; Raynolds, M.K.; Epstein, H.E.; Schwieder, M. Ground-based hyperspectral characterization of Alaska tundra vegetation along environmental gradients. Remote Sens. 2013, 5, 3971–4005.
[48]
Hapke, B.; DiMucci, D.; Nelson, R.; Smythe, W. The cause of the hot spot in vegetation canopies and soils: Shadow-hiding versus coherent backscatter. Remote Sens. Environ. 1996, 58, 63–68.
[49]
Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data: Earth observations for terrestrial biodiversity and ecosystems special issue. Remote Sens. Environ. 2008, 112, 2341–2353.
[50]
Buchhorn, M.; Petereit, R. Transportables Goniospektrometer mit konstantem Observationszentrum. In Patentblatt: Ver?ffentlichungen auf Grund des Patentgesetzes; Deutsches Patent- und Markenamt: München, Germany, 2013; p. p. 3568.
[51]
Buchhorn, M.; Petereit, R. Transportables Goniospektrometer mit konstantem Observationszentrum. German Pat. Appl. DE102011117713.A1, 31 January 2013.