全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Embedded NMR Sensor to Monitor Compressive Strength Development and Pore Size Distribution in Hydrating Concrete

DOI: 10.3390/s131215985

Keywords: embedded NMR sensor, RF coil, external tuning circuit, T2 relaxation time, cement paste, concrete, compressive strength, pore size distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

In cement-based materials porosity plays an important role in determining their mechanical and transport properties. This paper describes an improved low–cost embeddable miniature NMR sensor capable of non-destructively measuring evaporable water loss and porosity refinement in low and high water-to-cement ratio cement-based materials. The sensor consists of two NdFeB magnets having their North and South poles facing each other, separated by 7 mm to allow space for a Faraday cage containing a Teflon tube and an ellipsoidal RF coil. To account for magnetic field changes due to temperature variations, and/or the presence of steel rebars, or frequency variation due to sample impedance, an external tuning circuit was employed. The sensor performance was evaluated by analyzing the transverse magnetization decay obtained with a CPMG measurement from different materials, such as a polymer phantom, fresh white and grey cement pastes with different w/c ratios and concrete with low (0.30) and high (0.6) w/c ratios. The results indicated that the sensor is capable of detecting changes in water content in fresh cement pastes and porosity refinement caused by cement hydration in hardened materials, even if they are prepared with a low w/c ratio (w/c = 0.30). The short lifetime component of the transverse relaxation rate is directly proportional to the compressive strength of concrete determined by destructive testing. The r 2 (0.97) from the linear relationship observed is similar to that obtained using T 2 data from a commercial Oxford Instruments 12.9 MHz spectrometer.

References

[1]  Mehta, P.K.; Monteiro, J.M. Concrete, Microstructure, Properties and Materials, 3rd ed. ed.; McGraw Hill: New York, NY, USA, 2006; pp. 121–192.
[2]  ASTM F 2170-02. Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using In-Situ Probes. Available online: http://www.astm.org/Standards/F2170.htm (accessed on 18 November 2013).
[3]  Carino, N.J. Concrete Construction Engineering Handbook; CRC Press: Boca Raton, FL, USA, 1997.
[4]  Blinc, R.; Dolinsek, J.; Lahajnar, G.; Sepe, A.; Zupancic, I.; Zumer, S.; Milia, F.; Pintar, M.M. Spin-lattice relaxation of water in cement gels. J. Phys. Sci. 1988, 43, 1026–1038.
[5]  Jehng, J.Y.; Sprague, D.T.; Halperin, W.P. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing. Magn. Reson. Imaging 1996, 14, 785–791.
[6]  Apih, T.; Lahajnar, A.; Sepe, A.; Blinc, R.; Milia, F.; Cvelbar, R.; Emri, I.; Gusev, B.V.; Titova, L.A. Proton spin-lattice relaxation study of the hydration of self-stressed expansive cement. Cem. Concr. Res. 2001, 31, 263–269.
[7]  Blumich, B.; Blumler, P.; Eidmann, G.; Guthausen, A.; Haken, R.; Schmitz, U.; Saito, K.; Zimmer, G. The NMR-mouse: Construction, excitation, and applications—application to NMR imaging of elastomers. Magn. Reson. Imaging 1998, 16, 479–484.
[8]  Boguszynska, J.; Brown, M.C.A.; McDonald, P.J.; Mitchell, J.; Mulheron, M.; Tritt-Goc, J.; Verganelakis, D.A. Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields. Cem. Concr. Res. 2005, 35, 2033–2040.
[9]  Manz, B.; Coy, A.; Dykstra, R.; Eccles, C.D.; Hunter, M.W.; Parkinson, B.J.; Callaghan, P.T. A mobile one-sided NMR sensor with a homogeneous magnetic field: The NMR-MOLE. J. Magn. Reson. 2006, 183, 25–31.
[10]  Cano-Barrita, P.F.J.; Marble, A.E.; Balcom, B.J.; García, J.C.; Masthikin, I.V.; Thomas, M.D.A.; Bremner, T.W. Embedded NMR sensors to monitor evaporable water loss caused by hydration and drying in Portland cement mortar. Cem. Concr. Res. 2009, 39, 324–328.
[11]  Díaz-Díaz, F. Sensor Miniatura de Resonancia Magnética Nuclear (NMR) de Bajo Costo Para Caracterizar de Manera no Destructiva Materiales Basados en Cemento (in Spanish). Master's Thesis, Instituto Politécnico Nacional-CIIDIR Unidad Oaxaca, Oaxaca, Mexico, January 2013.
[12]  Meiboom, S.; Gill, D. Modified spin–echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688–691.
[13]  Ludwik, R.; Bretchko, P. RF Circuit Design Theory and Applications; Prentice-Hall: Upper Saddle River, NJ, USA, 2000; pp. 37–130.
[14]  Bentz, D.; Aitcin, P.C. The hidden meaning of water-cement ratio. Concr. Int. 2008, 30, 51–54.
[15]  Halperin, W.P.; Jehng, J.Y.; Song, Y.Q. Application of spin-spin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste. Magn. Reson. Imaging 1994, 12, 169–173.
[16]  Tazawa, E.; Miyazawa, S. Experimental study on mechanism autogenous shrinkage of concrete. Cem. Concr. Res. 1995, 25, 1633–1638.
[17]  Borgia, G.C.; Brown, R.J.S.; Fantazzini, P. Uniform-penalty inversion of multiexponential decay data. J. Magn. Reson. 1998, 132, 65–77.
[18]  Coates, G.; Xiao, L.; Prammer, M. NMR Logging Principles and Applications; Halliburton Energy Services: Houston, TX, USA, 1999; pp. 45–67.
[19]  Aitcin, P.C. Demystifying autogenous shrinkage. Concr. Int. 1999, 21, 54–56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133