A multiplexed microfluidic biosensor made of poly(methylmethacrylate) (PMMA) was integrated into an array of organic blend heterojunction photodiodes (OPDs) for chemiluminescent detection of pathogens. Waterborne Escherichia coli O157:H7, Campylobacter jejuni and adenovirus were targeted in the PMMA chip, and detection of captured pathogens was conducted by poly(2,7-carbazole)/fullerene OPDs which showed a responsivity over 0.20 A/W at 425 nm. The limits of chemiluminescent detection were 5 × 10 5 cells/mL for E. coli, 1 × 10 5 cells/mL for C. jejuni, and 1 × 10 ?8 mg/mL for adenovirus. Parallel analysis for all three analytes in less than 35 min was demonstrated. Further recovery tests illustrated the potential of the integrated biosensor for detecting bacteria in real water samples.
Pais, A.; Banerjee, A.; Klotzkin, D.; Papautsky, I. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip 2008, 8, 794–800.
[8]
Wang, X.; Amatatongchai, M.; Nacapricha, D.; Hofmann, O.; deMello, J.C.; Bradley, D.D.C.; deMello, A.J. Thin-film organic photodiodes for integrated on-chip chemiluminescence detection-application to antioxidant capacity screening. Sens. Actuators B Chem. 2009, 140, 643–648.
[9]
Miyake, M.; Nakajima, H.; Hemmi, A.; Yahiro, M.; Adachi, C.; Soh, N.; Ishimatsu, R.; Nakano, K.; Uchiyama, K.; Imato, T. Performance of an organic photodiode as an optical detector and its application to fluorometric flow-immunoassay for IgA. Talanta 2012, 96, 132–139.
[10]
Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 2009, 3, 649–653.
[11]
He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983.
[12]
Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302.
Zhao, X.; Dong, T. Multifunctional sample preparation kit and on-chip quantitative nucleic acid sequence-based amplification tests for microbial detection. Anal. Chem. 2012, 84, 8541–8548.
[15]
Zhang, L.; Dong, T. A Si/SiGe quantum well based biosensor for direct analysis of exothermic biochemical reaction. J. Micromech. Microeng. 2013, 23, 045011.
[16]
Foudeh, A.M.; Didar, T.F.; Veres, T.; Tabrizian, M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 2012, 12, 3249–3266.
[17]
Lazcka, O.; Del Campo, F.J.; Mu?oz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217.
[18]
Sinclair, R.G.; Jones, E.L.; Gerba, C.P. Viruses in recreational water-borne disease outbreaks: A review. J. Appl. Microbiol. 2009, 107, 1769–1780.
[19]
Cai, Y.; Shinar, R.; Zhou, Z.; Shinar, J. Multianalyte sensor array based on an organic light emitting diode platform. Sens. Actuators B Chem. 2008, 134, 727–735.
[20]
Leonard, P.; Hearty, S.; Brennan, L.; Dunne, L.; Quinn, J.; Chakraborty, T.; O'Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 2003, 32, 3–13.
[21]
Connelly, J.T.; Baeumner, A.J. Biosensors for the detection of waterborne pathogens. Anal. Bioanal. Chem. 2012, 402, 117–127.
[22]
Pires, N.M.M.; Dong, T.; Yang, Z.; Hoivik, N.; Zhao, X. A mediator embedded micro-immunosensing unit for electrochemical detection on viruses within physiological saline media. J. Micromech. Microeng. 2011, 21, 115031.
[23]
Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of care diagnostics: Status and future. Anal. Chem. 2011, 82, 487–515.
[24]
Zhao, X.; Dong, T.; Yang, Z.; Pires, N.; Hoivik, N. Compatible immune-NASBA LOC device for quantitative detection of waterborne pathogens: Design and validation. Lab. Chip 2012, 12, 602–612.
[25]
Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors of unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26.
[26]
Estevez, M.C.; Alvarez, M.; Lechuga, L.M. Integrated optical devices for lab-on-chip biosensing applications. Laser Photon. Rev. 2011, 6, 463–487.
[27]
Wolter, A.; Niessner, R.; Seidel, M. Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal. Chem. 2008, 80, 5854–5863.
[28]
Deshpande, K.; Mishra, R.K.; Bhand, S. A high sensitivity micro format chemiluminescence enzyme inhibition assay for determination of Hg(II). Sensors 2010, 10, 6377–6394.
[29]
Tang, L.; Lee, N.Y. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab Chip 2010, 10, 1274–1280.
[30]
Dong, T.; Yang, Z.; Su, Q.; Tran, N.M.; Egeland, E.B.; Karlsen, F.; Zhang, Y.; Kapiris, M.J.; Jakobsen, H. Integratable non-clogging microconcentrator based on counter-flow principle for continuous enrichment of CaSki cells sample. Microfluid. Nanofluid. 2011, 10, 855–865.
[31]
Sunkara, V.; Park, D.-K.; Hwang, H.; Chantiwas, R.; Soper, S.A.; Cho, Y.-K. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 2011, 11, 962–965.
[32]
Pires, N.M.M.; Dong, T.; Hanke, U.; Hoivik, N. Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care detection of hormonal compounds. J. Biomed. Opt. 2013, 18, 097001.
[33]
Dong, T.; Yang, Z.; Wu, H. Molecular simulations of R141b boiling flow in micro/nano channel: Interfacial phenomena. Energy Convers. Manag. 2006, 47, 2178–2191.
[34]
Dong, T.; Yang, Z. Measurement and modeling of R141b condensation heat transfer in silicon rectangular microchannels. J. Micromech. Microeng. 2008, 18, 085012.
[35]
Arredondo, B.; Romero, B.; Pena, J.M.S.; Fernández-Pacheco, A.; Alonso, E.; Vergaz, R.; de Dios, C. Visible light communication system using an organic bulk heterojunction photodetector. Sensors 2013, 13, 12266–12276.
[36]
Vacic, A.; Criscione, J.M.; Rajan, N.K.; Stern, E.; Fahmy, T.M.; Reed, M.A. Determination of molecular configuration by debye length modulation. J. Am. Chem. Soc. 2011, 133, 13886–13889.
[37]
Karsunke, X.Y.Z.; Niessner, R.; Seidel, M. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal. Bioanal. Chem. 2009, 395, 1623–1630.
[38]
Sapsford, K.E.; Rasooly, A.; Taitt, C.R.; Ligler, F.S. Detection of Campylobacter and Shigella. species in food samples using an array biosensor. Anal. Chem. 2004, 76, 433–440.
[39]
Xu, S.; Mutharasan, R. Rapid and sensitive detection of Giardia Lamblia using piezoelectric cantilever biosensor in finished and source water. Environ. Sci. Technol. 2010, 44, 1736–1741.