Understanding protein interaction networks and their dynamic changes is a major challenge in modern biology. Currently, several experimental and in silico approaches allow the screening of protein interactors in a large-scale manner. Therefore, the bulk of information on protein interactions deposited in databases and peer-reviewed published literature is constantly growing. Multiple databases interfaced from user-friendly web tools recently emerged to facilitate the task of protein interaction data retrieval and data integration. Nevertheless, as we evidence in this report, despite the current efforts towards data integration, the quality of the information on protein interactions retrieved by in silico approaches is frequently incomplete and may even list false interactions. Here we point to some obstacles precluding confident data integration, with special emphasis on protein interactions, which include gene acronym redundancies and protein synonyms. Three human proteins (choline kinase, PPIase and uromodulin) and three different web-based data search engines focused on protein interaction data retrieval (PSICQUIC, DASMI and BIPS) were used to explain the potential occurrence of undesired errors that should be considered by researchers in the field. We demonstrate that, despite the recent initiatives towards data standardization, manual curation of protein interaction networks based on literature searches are still required to remove potential false positives. A three-step workflow consisting of: (i) data retrieval from multiple databases, (ii) peer-reviewed literature searches, and (iii) data curation and integration, is proposed as the best strategy to gather updated information on protein interactions. Finally, this strategy was applied to compile bona fide information on human DREAM protein interactome, which constitutes liable training datasets that can be used to improve computational predictions.
References
[1]
Schuler, G.D.; Boguski, M.S.; Stewart, E.A.; Stein, L.D.; Gyapay, G.; Rice, K.; White, R.E.; Rodriguez-Tome, P.; Aggarwal, A.; Bajorek, E.; et al. A gene map of the human genome. Science 1996, 274, 540–546, doi:10.1126/science.274.5287.540.
[2]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921, doi:10.1038/35057062.
[3]
Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351, doi:10.1126/science.1058040.
Ramani, A.K.; Bunescu, R.C.; Mooney, R.J.; Marcotte, E.M. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 2005, 6, R40, doi:10.1186/gb-2005-6-5-r40.
[6]
Hart, G.T.; Ramani, A.K.; Marcotte, E.M. How complete are current yeast and human protein-interaction networks? Genome Biol. 2006, 7, e120.
[7]
Stumpf, M.P.; Thorne, T.; de Silva, E.; Stewart, R.; An, H.J.; Lappe, M.; Wiuf, C. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA 2008, 105, 6959–6964.
[8]
Venkatesan, K.; Rual, J.F.; Vazquez, A.; Stelzl, U.; Lemmens, I.; Hirozane-Kishikawa, T.; Hao, T.; Zenkner, M.; Xin, X.; Goh, K.I.; et al. An empirical framework for binary interactome mapping. Nat. Methods 2009, 6, 83–90, doi:10.1038/nmeth.1280.
[9]
Tyagi, M.; Hashimoto, K.; Shoemaker, B.A.; Wuchty, S.; Panchenko, A.R. Large-scale mapping of human protein interactome using structural complexes. EMBO Rep. 2012, 13, 266–271, doi:10.1038/embor.2011.261.
[10]
Casado-Vela, J.; Cebrian, A.; Gomez del Pulgar, M.T.; Sanchez-Lopez, E.; Vilaseca, M.; Menchen, L.; Diema, C.; Selles-Marchart, S.; Martinez-Esteso, M.J.; Yubero, N.; et al. Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein post-translational modifications. Proteomics 2011, 11, 590–603, doi:10.1002/pmic.201000287.
[11]
Braun, P.; Tasan, M.; Dreze, M.; Barrios-Rodiles, M.; Lemmens, I.; Yu, H.; Sahalie, J.M.; Murray, R.R.; Roncari, L.; de Smet, A.S.; et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 2009, 6, 91–97, doi:10.1038/nmeth.1281.
[12]
Casado-Vela, J.; Gonzalez-Gonzalez, M.; Matarraz, S.; Martínez-Esteso, M.J.; Vilella, M.; Sayagues, J.M.; Fuentes, M.; Lacal, J.C. Protein arrays: recent achievements and their application to study the human proteome. Curr. Proteomics 2013. in press.
[13]
Mishra, S. Computational prediction of protein-protein complexes. BMC Res. Notes 2012, 5, e495, doi:10.1186/1756-0500-5-495.
[14]
Jessulat, M.; Pitre, S.; Gui, Y.; Hooshyar, M.; Omidi, K.; Samanfar, B.; Tan le, H.; Alamgir, M.; Green, J.; Dehne, F.; et al. Recent advances in protein-protein interaction prediction: Experimental and computational methods. Expert Opin. Drug Discov. 2011, 6, 921–935, doi:10.1517/17460441.2011.603722.
[15]
Xia, J.F.; Wang, S.L.; Lei, Y.K. Computational methods for the prediction of protein-protein interactions. Protein Pept. Lett. 2010, 17, 1069–1078, doi:10.2174/092986610791760405.
Pitre, S.; Alamgir, M.; Green, J.R.; Dumontier, M.; Dehne, F.; Golshani, A. Computational methods for predicting protein-protein interactions. Adv. Biochem. Eng. Biotechnol. 2008, 110, 247–267.
[18]
Keskin, O.; Tuncbag, N.; Gursoy, A. Characterization and prediction of protein interfaces to infer protein-protein interaction networks. Curr. Pharm. Biotechnol. 2008, 9, 67–76, doi:10.2174/138920108783955191.
[19]
Gomez, S.M.; Choi, K.; Wu, Y. Prediction of protein-protein interaction networks. Curr. Protoc. Bioinformatics 2008, doi:10.1002/0471250953.bi0802s22.
[20]
Fernandez-Suarez, X.M.; Galperin, M.Y. The 2013 Nucleic Acids Research Database Issue and the online molecular biology database collection. Nucleic Acids Res. 2013, 41, D1–D7, doi:10.1093/nar/gks1297.
[21]
Elefsinioti, A.; Sarac, O.S.; Hegele, A.; Plake, C.; Hubner, N.C.; Poser, I.; Sarov, M.; Hyman, A.; Mann, M.; Schroeder, M.; et al. Large-scale de novo prediction of physical protein-protein association. Mol. Cell. Proteomics 2011, 10, doi:10.1074/mcp.M111.010629.
[22]
Klingstrom, T.; Plewczynski, D. Protein-protein interaction and pathway databases, a graphical review. Brief. Bioinform. 2011, 12, 702–713, doi:10.1093/bib/bbq064.
[23]
Aranda, B.; Blankenburg, H.; Kerrien, S.; Brinkman, F.S.; Ceol, A.; Chautard, E.; Dana, J.M.; De Las Rivas, J.; Dumousseau, M.; Galeota, E.; et al. PSICQUIC and PSISCORE: Accessing and scoring molecular interactions. Nat. Methods 2011, 8, 528–529, doi:10.1038/nmeth.1637.
Garcia-Garcia, J.; Schleker, S.; Klein-Seetharaman, J.; Oliva, B. BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference. Nucleic Acids Res. 2012, 40, W147–W151.
[26]
Schleker, S.; Sun, J.; Raghavan, B.; Srnec, M.; Muller, N.; Koepfinger, M.; Murthy, L.; Zhao, Z.; Klein-Seetharaman, J. The current Salmonella-host interactome. Proteomics Clin. Appl. 2012, 6, 117–133, doi:10.1002/prca.201100083.
[27]
Orchard, S. Molecular interaction databases. Proteomics 2012, 12, 1656–1662, doi:10.1002/pmic.201100484.
[28]
National Center for Biotechnology Information. Available online: www.ncbi.nlm.nih.gov/gene (accessed on 23 May 2013).
[29]
Alzheimer and neuronal disease laboratory_data repository. Available online: www.cnb.csic.es/~naranjo/ (accessed on 23 May 2013).
[30]
Uniprot protein knowledgebase/Swiss-Prot. Available online: http://www.uniprot.org/uniprot/ (accessed on 16 May 2013).
[31]
UniProt Frequently Asked Questions_question_48. Available online: http://www.uniprot.org/faq/48 (accessed on 23 May 2013).
[32]
Uniprot link to CHKA_HUMAN, P35790, Choline kinase. Available online: http://www.uniprot.org/uniprot/P35790 (accessed on 23 May 2013).
[33]
Dubois, T.; Howell, S.; Zemlickova, E.; Aitken, A. Identification of casein kinase Ialpha interacting protein partners. FEBS Lett. 2002, 517, 167–171, doi:10.1016/S0014-5793(02)02614-5.
[34]
Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; et al. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39, D561–D568, doi:10.1093/nar/gkq973.
[35]
String 9.05_web interface. Available online: http://string-db.org/ (accessed on 23 May 2013).
[36]
Psicquic View_web interface. Available online: http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml (accessed on 23 May 2013).
[37]
Casado-Vela, J.; Cebrian, A.; Gomez del Pulgar, M.T.; Lacal, J.C. Approaches for the study of cancer: Towards the integration of genomics, proteomics and metabolomics. Clin. Transl. Oncol. 2011, 13, 617–628.
[38]
UniProt Frequently Asked Questions_question_6. Available online: www.uniprot.org/faq/6 (accessed on 23 May 2013).
[39]
Gene Symbol Redundancy Checker. Available online: https://dl.dropboxusercontent.com/u/ 77276631/SymbolRedundancy.zip (accessed on 23 May 2013).
[40]
Swiss-Prot incorporated the International Protein Index Database. Available online: http://www.uniprot.org/news/2011/05/03/release (accessed on 23 May 2013).
[41]
Navarro-Munoz, M.; Ibernon, M.; Bonet, J.; Perez, V.; Pastor, M.C.; Bayes, B.; Casado-Vela, J.; Navarro, M.; Ara, J.; Espinal, A.; et al. Uromodulin and alpha(1)-antitrypsin urinary peptide analysis to differentiate glomerular kidney diseases. Kidney Blood Press. Res. 2012, 35, 314–325, doi:10.1159/000335383.
[42]
Tamm, I.; Horsfall, F.L., Jr. A mucoprotein derived from human urine which reacts with influenza, mumps, and Newcastle disease viruses. J. Exp. Med. 1952, 95, 71–97, doi:10.1084/jem.95.1.71.
[43]
Klein, J.; Jupp, S.; Moulos, P.; Fernandez, M.; Buffin-Meyer, B.; Casemayou, A.; Chaaya, R.; Charonis, A.; Bascands, J.L.; Stevens, R.; et al. The KUPKB: A novel Web application to access multiomics data on kidney disease. FASEB J. 2012, 26, 2145–2153, doi:10.1096/fj.11-194381.
[44]
Casado-Vela, J.; del Pulgar, T.G.; Cebrian, A.; Alvarez-Ayerza, N.; Lacal, J.C. Human urine proteomics: Building a list of human urine cancer biomarkers. Expert Rev. Proteomics 2011, 8, 347–360, doi:10.1586/epr.11.26.
[45]
Hegde, S.R.; Manimaran, P.; Mande, S.C. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Comput. Biol. 2008, 4, e1000237, doi:10.1371/journal.pcbi.1000237.
[46]
Buxbaum, J.D.; Choi, E.K.; Luo, Y.; Lilliehook, C.; Crowley, A.C.; Merriam, D.E.; Wasco, W. Calsenilin: A calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat. Med. 1998, 4, 1177–1181, doi:10.1038/2673.
An, W.F.; Bowlby, M.R.; Betty, M.; Cao, J.; Ling, H.P.; Mendoza, G.; Hinson, J.W.; Mattsson, K.I.; Strassle, B.W.; Trimmer, J.S.; Rhodes, K.J. Modulation of A-type potassium channels by a family of calcium sensors. Nature 2000, 403, 553–556, doi:10.1038/35000592.
[49]
Mellstrom, B.; Naranjo, J.R. Ca2+-dependent transcriptional repression and derepression: DREAM, a direct effector. Semin. Cell Dev. Biol. 2001, 12, 59–63, doi:10.1006/scdb.2000.0218.
[50]
Pathguide.org. Available online: http://www.pathguide.org/ (accessed on 23 May 2013).
[51]
Rivas, M.; Villar, D.; Gonzalez, P.; Dopazo, X.M.; Mellstrom, B.; Naranjo, J.R. Building the DREAM interactome. Sci. China Life Sci. 2011, 54, 786–792, doi:10.1007/s11427-011-4196-4.
[52]
Fedrizzi, L.; Lim, D.; Carafoli, E.; Brini, M. Interplay of the Ca2+-binding protein DREAM with presenilin in neuronal Ca2+ signaling. J. Biol. Chem. 2008, 283, 27494–27503, doi:10.1074/jbc.M804152200.
Rivas, M.; Aurrekoetxea, K.; Mellstrom, B.; Naranjo, J.R. Redox signaling regulates transcriptional activity of the Ca2+-dependent repressor DREAM. Antioxid. Redox Signal. 2011, 14, 1237–1243, doi:10.1089/ars.2010.3385.
[55]
Ledo, F.; Kremer, L.; Mellstrom, B.; Naranjo, J.R. Ca2+-dependent block of CREB-CBP transcription by repressor DREAM. EMBO J. 2002, 21, 4583–4592, doi:10.1093/emboj/cdf440.
[56]
Rivas, M.; Mellstrom, B.; Naranjo, J.R.; Santisteban, P. Transcriptional repressor DREAM interacts with thyroid transcription factor-1 and regulates thyroglobulin gene expression. J. Biol. Chem. 2004, 279, 33114–33122.
[57]
Scsucova, S.; Palacios, D.; Savignac, M.; Mellstrom, B.; Naranjo, J.R.; Aranda, A. The repressor DREAM acts as a transcriptional activator on Vitamin D and retinoic acid response elements. Nucleic Acids Res. 2005, 33, 2269–2279, doi:10.1093/nar/gki503.
[58]
Lusin, J.D.; Vanarotti, M.; Li, C.; Valiveti, A.; Ames, J.B. NMR structure of DREAM: Implications for Ca(2+)-dependent DNA binding and protein dimerization. Biochemistry 2008, 47, 2252–2264, doi:10.1021/bi7017267.
[59]
Zaidi, N.F.; Kuplast, K.G.; Washicosky, K.J.; Kajiwara, Y.; Buxbaum, J.D.; Wasco, W. Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). J. Neurochem. 2006, 98, 1290–1301, doi:10.1111/j.1471-4159.2006.03972.x.
[60]
Ruiz-Gomez, A.; Mellstrom, B.; Tornero, D.; Morato, E.; Savignac, M.; Holguin, H.; Aurrekoetxea, K.; Gonzalez, P.; Gonzalez-Garcia, C.; Cena, V.; et al. G protein-coupled receptor kinase 2-mediated phosphorylation of downstream regulatory element antagonist modulator regulates membrane trafficking of Kv4.2 potassium channel. J. Biol. Chem. 2007, 282, 1205–1215.
[61]
Quintero, C.A.; Valdez-Taubas, J.; Ferrari, M.L.; Haedo, S.D.; Maccioni, H.J. Calsenilin and CALP interact with the cytoplasmic tail of UDP-Gal:GA2/GM2/GD2 beta-1,3-galactosyltransferase. Biochem. J. 2008, 412, 19–26, doi:10.1042/BJ20071725.
[62]
Rivas, M.; Mellstrom, B.; Torres, B.; Cali, G.; Ferrara, A.M.; Terracciano, D.; Zannini, M.; Morreale de Escobar, G.; Naranjo, J.R. The DREAM protein is associated with thyroid enlargement and nodular development. Mol. Endocrinol. 2009, 23, 862–870, doi:10.1210/me.2008-0466.
[63]
Wu, L.J.; Mellstrom, B.; Wang, H.; Ren, M.; Domingo, S.; Kim, S.S.; Li, X.Y.; Chen, T.; Naranjo, J.R.; Zhuo, M. DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol. Brain 2010, 3, e3, doi:10.1186/1756-6606-3-3.
Zhang, Y.; Su, P.; Liang, P.; Liu, T.; Liu, X.; Liu, X.Y.; Zhang, B.; Han, T.; Zhu, Y.B.; Yin, D.M.; et al. The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit. J. Neurosci. 2010, 30, 7575–7586, doi:10.1523/JNEUROSCI.1312-10.2010.
[66]
Palczewska, M.; Casafont, I.; Ghimire, K.; Rojas, A.M.; Valencia, A.; Lafarga, M.; Mellstrom, B.; Naranjo, J.R. Sumoylation regulates nuclear localization of repressor DREAM. Biochim. Biophys. Acta 2010, 1813, 1050–1058.
[67]
Ramachandran, P.L.; Craig, T.A.; Atanasova, E.A.; Cui, G.; Owen, B.A.; Bergen, H.R., 3rd; Mer, G.; Kumar, R. The potassium channel interacting protein 3 (DREAM/KChIP3) heterodimerizes with and regulates calmodulin function. J. Biol. Chem. 2012, 287, 39439–39448.
[68]
Full list of human genes, acronyms and descriptions (NCBI). Available online: ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/ (accessed on 23 May 2013).
[69]
DASMI_web interface. Available online: http://dasmi.de/dasmiweb.php (accessed on 23 May 2013).
[70]
BIPS_web interface. Available online: http://sbi.imim.es/web/index.php/research/servers/bips. (accessed on 23 May 2013).