The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6) and the genome rat (BN/SsNHsd/Mcwi). Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.
References
[1]
Peria, Y.; Agmon-Levina, N.; Theodora, E.; Shoenfeld, Y. Sj?gren’s syndrome, the old and the new. Best Pract. Res. Clin. Rheumatol. 2012, 26, 105–117, doi:10.1016/j.berh.2012.01.012.
[2]
Karn, R.C.; Laukaitis, C.M. Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes. PLoS One 2011, 6, e20979, doi:10.1371/journal.pone.0020979.
[3]
Wilmarth, P.A.; Riviere, M.A.; Rustvold, D.L.; Lauten, J.D.; Madden, T.E.; David, L.L. Two-dimensional liquid chromatography study of the human whole saliva proteome. J. Proteome Res. 2004, 3, 1017–1023, doi:10.1021/pr049911o.
[4]
Denny, P.; Hagen, F.K.; Hardt, M.; Liao, L.; Yan, W.; Arellanno, M.; Bassilian, S.; Bedi, G.S.; Boontheung, P.; Cociorva, D.; et al. The proteomes of human parotid and submandibular/ sublingual gland salivas collected as the ductal secretions. J. Proteome Res. 2008, 7, 1994–2006, doi:10.1021/pr700764j.
[5]
Castle, D.; Castle, A. Intracellular transport and secretion of salivary proteins. Crit. Rev. Oral Biol. Med. 1998, 9, 4–22, doi:10.1177/10454411980090010301.
[6]
UniProt. Available online: http://www.uniprot.org/ (accessed on 1 October 2013).
[7]
SignalP 4.1 server. Available online: http://www.cbs.dtu.dk/services/SignalP/ (accessed on 1 October 2013).
[8]
Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. Signalp 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786, doi:10.1038/nmeth.1701.
[9]
UCSC genome bioinformatics. Available online: http://www.genome.ucsc.edu/ (accessed on 1 October 2013).
Fitch, W.M. Homology a personal view on some of the problems. Trends Genet. 2000, 16, 227–231, doi:10.1016/S0168-9525(00)02005-9.
[13]
Gabaldon, T.; Koonin, E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013, 14, 360–366, doi:10.1038/nrg3456.
[14]
Lawrence, M.G.; Lai, J.; Clements, J.A. Kallikreins on steroids: Structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr. Rev. 2010, 31, 407–446, doi:10.1210/er.2009-0034.
[15]
Laukaitis, C.M.; Critser, E.S.; Karn, R.C. Salivary androgen-binding protein (abp) mediates sexual isolation in mus musculus. Evolution 1997, 51, 2000–2005, doi:10.2307/2411020.
[16]
Talley, H.M.; Laukaitis, C.M.; Karn, R.C. Female preference for male saliva: Implications for sexual isolation of Mus musculus subspecies. Evolution 2001, 55, 631–634, doi:10.1554/0014-3820(2001)055[0631:FPFMSI]2.0.CO;2.
[17]
Vo?lajerová Bímová, B.; Macholán, M.; Baird, S.E.B.; Munclinger, P.; Laukaitis, C.M.; Karn, R.C.; Luzynski, K.; Tucker, P.; Piálek, J. Reinforcement selection acting on the European house mouse hybrid zone. Mol. Ecol. 2011, 20, 2403–2424, doi:10.1111/j.1365-294X.2011.05106.x.
[18]
Bímová, B.; Karn, R.C.; Pialek, J. The role of salivary androgen-binding protein in reproductive isolation between two subspecies of house mouse: Mus musculus musculus and Mus musculus domesticus. Biol. J. Linn. Soc. Lond. 2005, 84, 349–361, doi:10.1111/j.1095-8312.2005.00439.x.
[19]
Dominguez, P. Cloning of a syrian hamster cdna related to sexual dimorphism: Establishment of a new family of proteins. FEBS Lett. 1995, 376, 257–261, doi:10.1016/0014-5793(95)01294-4.
[20]
Karn, R.C. The mouse salivary androgen-binding protein (ABP) alpha subunit closely resembles chain 1 of the cat allergen Fel di. Biochem. Genet. 1994, 32, 271–277, doi:10.1007/BF00555830.
[21]
Gresik, E.W. The granular convoluted tubule (GCT) cell of rodent submandibular glands. Microsc. Res. Tech. 1994, 27, 1–24, doi:10.1002/jemt.1070270102.
[22]
Hay, D.I.; Smith, D.J.; Schluckebier, S.K.; Moreno, E.C. Relationship between concentration of human salivary statherin and inhibition of calcium-phosphate precipitation in stimulated human-parotid saliva. J. Dent. Res. 1984, 63, 857–863, doi:10.1177/00220345840630060901.
[23]
Brandtzaeg, P. Secretory immunity with special reference to the oral cavity. J. Oral Microbiol. 2013, 5, 1–24.
[24]
Laukaitis, C.; Karn, R.C. Recognition of subspecies status mediated by androgen-binding protein (ABP) in the evolution of incipient reinforcement on the european house mouse hybrid zone. In Evolution of the House Mouse; Macholan, M., Munclinger, P., Baird, S.J., Pialek, J., Eds.; Cambridge University Press: Cambridge, UK, 2012.
[25]
Williamson, M.P. The structure and function of proline-rich regions in proteins. Biochem. J. 1994, 297, 249–260.
[26]
Ramachandran, P.; Boontheung, P.; Xie, Y.; Sondej, M.; Wong, D.T.; Loo, J.A. Identification of n-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res. 2006, 5, 1493–1503, doi:10.1021/pr050492k.
[27]
Carpenter, G.H. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 2013, 4, 267–276, doi:10.1146/annurev-food-030212-182700.