A novel multi-axial bioreactor was designed and developed to deliver combinations of the following dynamic mechanical stimulation conditions: hydrostatic pressure, pulsatile perfusion flow and uniaxial compression in order to mimic in vivo conditions. This mechanical arrangement simultaneously allows triaxial stimulation and characterization of mechanical properties of samples, in particular simulating the conditions experienced by the nucleus pulposus in vivo. A series of initial experiments were performed on this prototype system using consistent, commercially-available, three dimensional scaffolds in combination with human dermal fibroblasts. Our results show that while such bioreactors hold much promise in tissue engineering of desired organs, achieving the right combination of mechanical stimuli and other conditions required in order to enhance the final properties of the cell-scaffold systems is challenging.
References
[1]
Barron, V.; Brougham, C.; Coghlan, K.; McLucas, E.; O’Mahoney, D.; Stenson-Cox, C.; McHugh, P.E. The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells. J. Mater. Sci. Mater. Med. 2007, 18, 1973–1981, doi:10.1007/s10856-007-3125-3.
Bitar, M.; Salih, V.; Brown, R.A.; Nazhat, S.N. Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 2007, 18, 237–244, doi:10.1007/s10856-006-0685-1.
[4]
Cha, J.M.; Park, S.-N.; Noh, S.H.; Suh, H. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif. Organs 2006, 30, 250–258, doi:10.1111/j.1525-1594.2006.00212.x.
[5]
Tong, Z.; Duncan, R.L.; Jia, X. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng. Part A 2013, 19, 1862–1878, doi:10.1089/ten.tea.2012.0694.
[6]
Wang, Y.-K.; Chen, C.S. Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J. Cell. Mol. Med. 2013, 17, 823–832.
[7]
Benya, P.D.; Shaffer, J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982, 30, 215–224, doi:10.1016/0092-8674(82)90027-7.
[8]
Paul, C.P.L.; Schoorl, T.; Zuiderbaan, H.A.; Doulabi, B.Z.; van der Veen, A.J.; van de Ven, P.M.; Smit, T.H.; van Royen, B.J.; Helder, M.N.; Mullender, M.G. Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 2013, 8, doi:10.1371/journal.pone.0062411.
[9]
De, R.; Safran, S.A. Dynamical theory of active cellular response to external stress. Phys. Rev. E 2008, 78, 18.
[10]
Roberts, S.; Evans, H.; Trivedi, J.; Menage, J. Histology and Pathology of the Human Intervertebral Disc. J. Bone Joint Surg. Am. 2006, 88, 10–14.
[11]
Ayotte, D.C.; Ito, K.; Perren, S.M.; Tepic, S. Direction-dependent constriction flow in a poroelastic solid: The intervertebral disc valve. J. Biomech. Eng. 2000, 122, 587–593, doi:10.1115/1.1319658.
[12]
Maroudas, A.; Stockwell, R.A.; Nachemson, A.; Urban, J. Factors involved in the nutrition of the human lumbar intervertebral disc: Cellularity and diffusion of glucose in vitro. J. Anat. 1975, 120, 113–130.
[13]
Ferguson, S.J.; Ito, K.; Nolte, L.-P. Fluid flow and convective transport of solutes within the intervertebral disc. J. Biomech. 2004, 37, 213–221, doi:10.1016/S0021-9290(03)00250-1.
[14]
Reza, A.T.; Nicoll, S.B. Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann. Biomed. Eng. 2008, 36, 204–213, doi:10.1007/s10439-007-9407-6.
[15]
Huang, C.Y.; Gu, W.Y. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J. Biomech. 2008, 41, 1184–1196, doi:10.1016/j.jbiomech.2008.02.002.
[16]
Huang, C.Y.; Hagar, K.L.; Frost, L.E.; Sun, Y.; Cheung, H.S. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 2004, 22, 313–323, doi:10.1634/stemcells.22-3-313.
[17]
Chan, S.C.W.; Ferguson, S.J.; Gantenbein-Ritter, B. The effects of dynamic loading on the intervertebral disc. Eur. Spine J. 2011, 20, 1796–1812, doi:10.1007/s00586-011-1827-1.
[18]
McCoy, R.J.; Jungreuthmayer, C.; O’Brien, F.J. Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnol. Bioeng. 2012, 109, 1583–1594, doi:10.1002/bit.24424.
[19]
Mollers, S.; Heschel, I.; Damink, L.; Schugner, F.; Deumens, R.; Muller, B.; Bozkurt, A.; Nava, J.G.; Noth, J.; Brook, G.A. Cytocompatibility of a Novel, Longitudinally Microstructured Collagen Scaffold Intended for Nerve Tissue Repair. Tissue Eng. Part A 2008, 15, 461–472.
[20]
Van Donkelaar, C.C.; Schulz, R.M. Review on patents for mechanical stimulation of articular cartilage tissue engineering. Recent Pat. Biomed. Eng. 2008, 1, 1–12, doi:10.2174/1874764710801010001.
[21]
Dar, A.; Shachar, M.; Leor, J.; Cohen, S. Cardiac tissue engineering—Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 2002, 80, 305–312, doi:10.1002/bit.10372.
[22]
Dvir-Ginzberg, M.; Gamlieli-Bonshtein, I.; Agbaria, R.; Cohen, S. Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 2003, 9, 757–766, doi:10.1089/107632703768247430.
[23]
Yang, T.H.; Miyoshi, H.; Ohshima, N. Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J. Biomed. Mater. Res. 2001, 55, 379–386, doi:10.1002/1097-4636(20010605)55:3<379::AID-JBM1026>3.0.CO;2-Z.