The failure criteria from rock mechanics, Hoek-Brown and Johnston failure criteria, may be extended and modified to assess the ultimate compressive strength of axially loaded circular fiber reinforced polymer (FRP)-confined concrete columns. In addition to the previously modified Hoek-Brown criterion, in this study, the Johnston failure criterion is extended to scope of FRP-confined concrete, verified with the experimental data and compared with the significant relationships from the current literature. Wide-range compressive strengths from 7 to 108 MPa and high confinement ratios up to 2.0 are used to verify the ultimate strengths in short columns. The results are in good agreement with experimental data for all confinement levels and concrete strengths.
References
[1]
Fardis, M.N.; Khalili, H. Concrete encased in fiberglass-reinforced plastic. ACI Struct. J. 1981, 78, 440–445.
[2]
Saadatmanesh, H.; Ehsani, M.R.; Li, M.W. Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Struct. J. 1994, 91, 434–447.
[3]
Karbhari, V.M.; Gao, Y. Composite jacketed concrete under uniaxial compression—Verification of simple design equations. ASCE J. Mater. Civ. Eng. 1997, 9, 185–193, doi:10.1061/(ASCE)0899-1561(1997)9:4(185).
[4]
Samaan, M.; Mirmiran, A.; Shahawy, M. Modeling of concrete confined by fiber composites. ASCE J. Struct. Eng. 1998, 124, 1025–1031, doi:10.1061/(ASCE)0733-9445(1998)124:9(1025).
[5]
Ozbakkaloglu, T.; Ak?n, E. Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression. ASCE J. Compos. Constr. 2012, 16, 451–463, doi:10.1061/(ASCE)CC.1943-5614.0000273.
[6]
Dai, J.G.; Bai, Y.L.; Teng, J.G. Behaviour and modeling of concrete confined with FRP composites of large deformability. ASCE J. Compos. Constr. 2011, 15, 963–973, doi:10.1061/(ASCE)CC.1943-5614.0000230.
[7]
Richart, E.; Brandtzaeg, A.; Brown, R.L. Failure of Plain and Spirally Reinforced Concrete in Compression; Bulletin 190; University of Illinois, Engineering Experimental Station: Champaign, IL, USA, 1929.
[8]
Fafitis, A.; Shah, S.P. Lateral Reinforcement for High-Strength Concrete Columns. In High-Strength Concrete; ACI SP-87; American Concrete Institute: Farmington Hills, MI, USA, 1985; pp. 213–232.
[9]
Razvi, S.R.; Saatcioglu, M. Confinement model for high-strength concrete. ASCE J. Struct. Eng. 1999, 125, 3281–3289.
[10]
Ansari, F.; Li, Q. High strength concrete subjected to triaxial compression. ACI Mater. J. 1998, 95, 747–755.
[11]
Saafi, M.; Toutanji, H.A.; Li, Z. Behaviour of concrete columns confined with fiber reinforced polymer tubes. ACI Mater. J. 1999, 96, 500–509.
[12]
Toutanji, H.A. Stress-strain characteristics of concrete columns externally confined with advanced fibre composite sheets. ACI Mater. J. 1999, 96, 397–402.
[13]
Spoelstra, M.R.; Monti, G. FRP-confined concrete model. ASCE J. Compos. Constr. 1999, 3, 143–150, doi:10.1061/(ASCE)1090-0268(1999)3:3(143).
Hoek, E.; Kaiser, P.K.; Bawden, W.F. Support of Underground Excavations in Hard Rock; A.A. Balkema: Rotterdam, Netherlands, 1995; p. 215.
[16]
Johnston, I.W. Comparison of two strength crieria for intact rock. ASCE J. Geotech. Eng. Div. 1985, 111, 1449–1454, doi:10.1061/(ASCE)0733-9410(1985)111:12(1449).
[17]
Girgin, Z.C.; Ar?oglu, N.; Ar?oglu, E. Evaluation of strength criteria for very-high-strength concretes under triaxial compression. ACI Struct. J. 2007, 104, 278–284.
[18]
Girgin, Z.C. A modified failure criterion to predict ultimate strength of circular columns confined by different materials. ACI Struct. J. 2009, 106, 800–809.
[19]
De Lorenzis, L.; Tepfers, R. Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites. ASCEJ. Compos. Constr. 2003, 7, 219–237, doi:10.1061/(ASCE)1090-0268(2003)7:3(219).
[20]
Rousakis, T.C.; Rakitzis, T.D.; Karabinis, A.I. Design-oriented strength model for FRP-confined concrete members. ASCEJ. Compos. Constr. 2012, 16, 615–625, doi:10.1061/(ASCE)CC.1943-5614.0000295.
[21]
Ozbakkaloglu, T.; Lim, J.C. Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Compos. Part B 2013, 55, 607–634, doi:10.1016/j.compositesb.2013.07.025.
[22]
Miyauchi, K.; Inoue, S.; Kuroda, T.; Kobayashi, A. Strengthening effects of concrete columns with carbon fiber sheet. Trans. Jpn. Concr. Inst. 1999, 21, 143–150.
[23]
Ilki, A.; Kumbasar, N. Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections. J. Earth Eng. 2003, 7, 381–406.
[24]
Xiao, Y.; Wu, H. Compressive behavior of concrete confined by carbon fiber composite jackets. ASCE J. Mater. Civ. Eng. 2000, 12, 139–146, doi:10.1061/(ASCE)0899-1561(2000)12:2(139).
Howie, I.; Karbhari, V.M. Effect of Materials Architecture on Strengthening Efficiency of Composite Wraps for Deteriorating Columns in the North-East. In Infrastructure: New Materials and Methods of Repair; Basham, K.D., Ed.; American Society of Civil Engineers: New York, NY, USA, 1994; pp. 199–206.
[27]
Watanabe, K.; Nakamura, H.; Honda, T.; Toyoshima, M.; Iso, M.; Fujimaki, T.; Kaneto, M.; Shirai, N. Confinement Effect of FRP Sheet on Strength and Ductility of Concrete Cylinders under Uniaxial Compression. In Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structure, Sapporo, Japan, 14–16 October 1997; pp. 233–240.
[28]
Mirmiran, A.; Shahawy, M. Behavior of concrete columns confined by fiber composites. ASCE J. Struct. Eng. 1997, 123, 583–590, doi:10.1061/(ASCE)0733-9445(1997)123:5(583).
[29]
Mirmiran, A.; Shahawy, M.; Samaan, M.; El Echary, H. Effect of column parameters on FRP-confined concrete. ASCE J. Compos. Constr. 1998, 2, 175–185, doi:10.1061/(ASCE)1090-0268(1998)2:4(175).
[30]
Rochette, P.; Labossière, P. Axial testing of rectangular column models confined with composites. ASCE J. Compos. Constr. 2000, 4, 129–136, doi:10.1061/(ASCE)1090-0268(2000)4:3(129).
[31]
Karabinis, A.I.; Rousakis, T.C. Concrete confined by FRP material: A plasticity approach. Eng. Struct. 2002, 24, 923–932, doi:10.1016/S0141-0296(02)00011-1.
[32]
Thériault, M.; Neale, K.W.; Claude, S. Fiber-reinforced polymer-confined circular concrete columns: Investigation of size and slenderness effects. ASCE J. Compos. Constr. 2004, 8, 323–331.
[33]
El Chabib, H.; Nehdi, M.; El Naggar, M.H. Behavior of SCC confined in short GFRP tubes. Cem. Concr. Compos. 2005, 27, 55–64, doi:10.1016/j.cemconcomp.2004.02.045.
[34]
Mirmiran, A.; Shahawy, M.; Beitleman, T. Slenderness limit for hybrid FRP-concrete columns. ASCE J. Compos. Constr. 2001, 5, 26–34, doi:10.1061/(ASCE)1090-0268(2001)5:1(26).
[35]
Pon, T.H.; Li, Y.F.; Shih, B.J.; Han, M.S.; Chu, G.D.; Chiu, Y.J. Experiments of Scale Effects on the Strength of FRP Reinforced Concrete(in Chinese). In Proceedings of the 4th National Conference on Structural Engineering, Taipei, Taiwan, September 1998; pp. 2133–2140.
[36]
Chu, G.D. The Technology and Application of Composites in the Reinforcement of Structures in Civil Engineering. In Proceedings of the Technical Conference on Reinforced of RC StructureIndustry Technology Research Institute, Taipei, Taiwan, September 1998; p. 45.
[37]
Rousakis, T. Experimental Investigation of Concrete Cylinders Confined by Carbon FRP Sheets, under Monotonic and Cyclic Axial Compressive Load; Chalmers University of Technology: G?teborg, Sweden, 2001; p. 87.
[38]
Lin, H.L.; Liao, C.I. Compressive strength of reinforced concrete-column confined by composite materials. Compos. Struct. 2004, 65, 239–250, doi:10.1016/j.compstruct.2003.11.001.
[39]
Berthet, J.F.; Ferrier, E.; Hamelin, P. Compressive behavior of concrete externally confined by composite jackets. Part A: Experimental study. Constr. Build. Mater. 2005, 19, 223–232, doi:10.1016/j.conbuildmat.2004.05.012.
[40]
Triantafillou, T.C.; Papanicolaou, C.G.; Zissimopoulos, P.; Laourdekis, T. Concrete confinement with textile-reinforced mortar jackets. ACI Struct. J. 2006, 103, 28–37.
[41]
Almussalam, T.H. Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Compos. Part B 2007, 38, 629–639, doi:10.1016/j.compositesb.2006.06.021.
[42]
Wang, L.M.; Wu, Y.F. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Eng. Struct. 2008, 30, 493–505, doi:10.1016/j.engstruct.2007.04.016.
[43]
Lin, C.; Li, Y. An effective peak stress formula for concrete confined with carbon fibre reinforced plastics. Can. J. Civ. Eng. 2003, 30, 882–889, doi:10.1139/l03-047.
[44]
Owen, L.M. Stress-Strain Behavior of Concrete Confined by Carbon Fiber Jacketing. Master’s Thesis, University of Washington, Seattle, WA, USA, 1998.
[45]
Mandal, S.; Hoskin, A.; Fam, A. Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets. ACI Struct. J. 2005, 102, 383–392.
[46]
Mander, J.B.; Priestley, J.N.; Park, R. Theoretical stress-strain model for confined concrete. ASCE J. Struct. Eng. 1988, 114, 1804–1826, doi:10.1061/(ASCE)0733-9445(1988)114:8(1804).
[47]
Saatcioglu, M.; Razvi, S.R. Strength and ductility of confined concrete. ASCE J. Struct. Eng. 1992, 118, 1590–1607.
[48]
Saatcioglu, M.; Razvi, S.R. Displacement-based design of reinforced concrete columns for confinement. ACI Struct. J. 2002, 99, 3–11.
[49]
Goodman, R.E. Introduction to Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1989.
[50]
Candappa, D.C.; Sanjayan, J.G.; Setunge, S. Complete triaxial stress-strain curves of high-strength concrete. J. Mater. Civ. Eng. 2001, 13, 209–215, doi:10.1061/(ASCE)0899-1561(2001)13:3(209).
[51]
Dahl, K.K.B. A Failure Criterion for Normal and High Strength Concrete; Project 5, Rep. 5.6; American Concrete Institute: Farmington Hills, MI, USA, 1992.
[52]
Thériault, M.; Neale, K.W. Design equations for axially loaded reinforced concrete columns strengthened with FRP wraps. Can. J. Civ. Eng. 2000, 27, 1011–1020, doi:10.1139/l00-019.
[53]
Lam, L.; Teng, J.G. Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 2003, 17, 471–489, doi:10.1016/S0950-0618(03)00045-X.
[54]
Campione, G.; Miraglia, N. Strength and strain capacities of concrete compression members reinforced with FRP. Cem. Concr. Compos. 2003, 25, 31–41, doi:10.1016/S0958-9465(01)00048-8.
[55]
Fahmy, M.F.M.; Wu, Z. Evaluating and proposing models of circular concrete columns confined with different FRP composites. J. Compos. 2010, 41, 199–213.
[56]
Li, G. Experimental study of FRP confined concrete cylinders. Eng. Struct. 2006, 28, 1001–1008, doi:10.1016/j.engstruct.2005.11.006.
[57]
Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. Refinement of a design-oriented stress-strain model for FRP-confined concrete. ASCE J. Compos. Constr. 2009, 13, 269–278, doi:10.1061/(ASCE)CC.1943-5614.0000012.
[58]
Xie, J.; Elwi, A.E.; MacGregor, J.G. Mechanical properties of three high-strength concretes containing silica fume. ACI Mater. J. 1995, 92, 135–145.
[59]
Attard, M.M.; Setunge, S. Stress-strain relationship of confined and unconfined concrete. ACI Mater. J. 1996, 93, 432–442.
[60]
Wu, Y.F.; Zhou, Y. Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP. ASCE J. Compos. Constr. 2010, 14, 175–184, doi:10.1061/(ASCE)CC.1943-5614.0000062.
[61]
Mohamed, H.; Masmoudi, R. Axial load capacity of concrete-filled FRP tube columns: Experimental versus predictions. ASCE J. Compos. Constr. 2010, 14, 231–243, doi:10.1061/(ASCE)CC.1943-5614.0000066.