The use of deoxyribonucleic acid (DNA) oligonucleotides has proven to be a powerful and versatile strategy to assemble nanomaterials into two (2D) and three-dimensional (3D) superlattices. With the aim of contributing to the elucidation of the factors that affect the stability of this type of superlattices, the assembly of gold nanoparticles grafted with different DNA oligonucleotides was characterized by UV-Vis absorption spectroscopy as a function of temperature. After establishing an appropriate methodology the effect of (i) the length of the grafted oligonucleotides; (ii) the length of their complementary parts and also of (iii) the simultaneous grafting of different oligonucleotides was investigated. Our results indicate that the electrostatic repulsion between the particles and the cooperativity of the assembly process play crucial roles in the stability of the assemblies while the grafting density of the oligonucleotide strands seems to have little influence.
Pileni, M.P. Supracrystals of inorganic nanocrystals: An open challenge for new physical properties. Acc. Chem. Res. 2008, 41, 1799–1809, doi:10.1021/ar800082q.
Bruylants, G.; Bartik, K.; Delplancke-Ogletree, M.-P. Growth Kinetics and Controlled Auto-Assembly of Gold Nanoparticles. In Proceedings of the European Conference on Nano-Films, Liège, Belgium, 24 March 2010; p. 5.
Kalsin, A.M.; Fialkowski, M.; Paszewski, M.; Smoukov, S.K.; Bishop, K.J.M.; Grzybowski, B.A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420–424, doi:10.1126/science.1125124.
[8]
Taleb, A.; Russier, V.; Courty, A.; Pileni, M. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Phys. Rev. B 1999, 59, 13350–13358, doi:10.1103/PhysRevB.59.13350.
[9]
Pinna, N.; Maillard, M.; Courty, A.; Russier, V.; Pileni, M. Optical properties of silver nanocrystals self-organized in a two-dimensional superlattice: Substrate effect. Phys. Rev. B 2002, 66, 045415:1–045415:6.
[10]
Pileni, M.P.; Lalatonne, Y.; Ingert, D.; Lisiecki, I.; Courty, A. Self assemblies of nanocrystals: Preparation, collective properties and uses. Faraday Discuss. 2004, 125, 251–264.
[11]
Chen, C.-F.; Tzeng, S.-D.; Chen, H.-Y.; Lin, K.-J.; Gwo, S. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Am. Chem. Soc. 2008, 130, 824–826, doi:10.1021/ja0773610.
[12]
Sidhaye, D.S.; Prasad, B.L.V. Melting Characteristics of superlattices of alkanethiol-capped gold nanoparticles: The “excluded” story of excess thiol. Chem. Mater. 2010, 22, 1680–1685, doi:10.1021/cm9031607.
[13]
Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.
[14]
Alivisatos, A.P.; Johnsson, K.P.; Peng, X.; Wilson, T.E.; Loweth, C.J.; Bruchez, M.P.; Schultz, P.G. Organization of ‘nanocrystal molecules’ using DNA. Nat. Lett. 1996, 382, 609–611, doi:10.1038/382609a0.
Mitchell, G.P.; Mirkin, C.A.; Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 1999, 121, 8122–8123, doi:10.1021/ja991662v.
[17]
Sun, D.; Gang, O. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA. J. Am. Chem. Soc. 2011, 133, 5252–5254, doi:10.1021/ja111542t.
Mirkin, C.A. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 2000, 39, 2258–2272, doi:10.1021/ic991123r.
[20]
Demers, L.M.; Mirkin, C.A.; Mucic, R.C.; Reynolds, R.A.; Letsinger, R.L.; Elghanian, R.; Viswanadham, G. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 2000, 72, 5535–5541, doi:10.1021/ac0006627.
[21]
Jin, R.; Wu, G.; Li, Z.; Mirkin, C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 2003, 125, 1643–1654, doi:10.1021/ja021096v.
[22]
Hurst, S.J.; Lytton-Jean, A.K.R.; Mirkin, C.A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 2006, 78, 8313–8318, doi:10.1021/ac0613582.
Hurst, S.J.; Hill, H.D.; Mirkin, C.A. “Three-dimensional hybridization” with polyvalent DNA-gold nanoparticle conjugates. J. Am. Chem. Soc. 2008, 130, 12192–12200, doi:10.1021/ja804266j.
[25]
Hill, H.D.; Macfarlane, R.J.; Senesi, A.J.; Lee, B.; Park, S.Y.; Mirkin, C.A. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 2008, 8, 2341–2344, doi:10.1021/nl8011787.
[26]
Macfarlane, R.J.; Lee, B.; Hill, H.D.; Senesi, A.J.; Seifert, S.; Mirkin, C.A. Assembly and organization processes in DNA-directed colloidal crystallization. PNAS 2009, 106, 10493–10498.
[27]
Jones, M.R.; Macfarlane, R.J.; Lee, B.; Zhang, J.; Young, K.L.; Senesi, A.J.; Mirkin, C.A. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9, 913–917, doi:10.1038/nmat2870.
Maye, M.M.; Nykypanchuk, D.; van der Lelie, D.; Gang, O. A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc. 2006, 128, 14020–14021, doi:10.1021/ja0654229.
[31]
Maye, M.M.; Nykypanchuk, D.; van der Lelie, D.; Gang, O. DNA-regulated micro- and nanoparticle assembly. Small 2007, 3, 1678–1682, doi:10.1002/smll.200700357.
[32]
Nykypanchuk, D.; Maye, M.M.; van der Lelie, D.; Gang, O. DNA-based approach for interparticle interaction control. Langmuir 2007, 23, 6305–6314, doi:10.1021/la0637566.
[33]
Xiong, H.; van der Lelie, D.; Gang, O. DNA linker-mediated crystallization of nanocolloids. J. Am. Chem. Soc. 2008, 130, 2442–2443, doi:10.1021/ja710710j.
[34]
Maye, M.M.; Kumara, M.T.; Nykypanchuk, D.; Sherman, W.B.; Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 2010, 5, 116–120, doi:10.1038/nnano.2009.378.
[35]
Xiong, H.; Sfeir, M.Y.; Gang, O. Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 2010, 10, 4456–4462, doi:10.1021/nl102273c.
[36]
Nykypanchuk, D.; Maye, M.M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nat. Lett. 2008, 451, 549–552, doi:10.1038/nature06560.
[37]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75, doi:10.1039/df9511100055.
[38]
Doyen, M.; Bartik, K.; Bruylants, G. UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: Observation of gold-citrate aggregates. J. Colloid Interface Sci. 2013, 399, 1–5, doi:10.1016/j.jcis.2013.02.040.
[39]
He, Y.Q.; Liu, S.P.; Kong, L.; Liu, Z.F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2861–2866, doi:10.1016/j.saa.2004.10.035.
[40]
Bruylants, G.; Boccongelli, M.; Snoussi, K.; Bartik, K. Comparison of the thermodynamics and base-pair dynamics of a full LNA:DNA duplex and of the isosequential DNA:DNA duplex. Biochemistry 2009, 48, 8473–8482, doi:10.1021/bi900615z.
[41]
Cahen, P.; Luhmer, M.; Fontaine, C.; Morat, C.; Reisse, J.; Bartik, K. Study by 23Na-NMR, 1H-NMR, and ultraviolet spectroscopy of the thermal stability of an 11-basepair oligonucleotide. Biophys. J. 2000, 78, 1059–1069, doi:10.1016/S0006-3495(00)76664-1.
[42]
Cahen, P. Etude de l’atmosphère ionique et de la stabilité de la structure double brin d’oligonucléotides par RMN du 23Na[in French]. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 28 January 2000.
[43]
Braulin, W.H.; Bloomfield, V.A. 1H NMR study of the base-pairing reactions of d(GGAATTCC): Salt effects on the equilibria and kinetics of strand association. Biochemistry 1991, 30, 754–758, doi:10.1021/bi00217a026.
[44]
Lang, B. Hybridization thermodynamics of DNA bound to gold nanoparticles. J. Chem. Thermodyn. 2010, 42, 1435–1440, doi:10.1016/j.jct.2010.06.013.
[45]
Largo, J.; Starr, F.W.; Sciortino, F. Self-assembling DNA dendrimers: A numerical study. Langmuir 2007, 23, 5896–5905, doi:10.1021/la063036z.