Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs) and hyperbranched polyimide–silica composites (HBPI–silica CPTs) were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A 2 + B 3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS) or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO 2/CH 4 separation, that is, both CO 2 permeability and CO 2/CH 4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.
Kickelbick, G. Hybrid Materials; Wiley-VCH: Weinheim, Germany, 2007.
[3]
Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957, doi:10.1021/cr068035q.
[4]
Cornelius, C.J.; Marand, E. Hybrid silica–polyimide composite membranes gas transport properties. J. Membr. Sci. 2002, 202, 97–118, doi:10.1016/S0376-7388(01)00734-7.
[5]
Ragosta, G.; Musto, P. Polyimide/silica hybrids via the sol-gel route: High performance materials for the new technological challenges. Express Polym. Lett. 2009, 3, 413–428, doi:10.3144/expresspolymlett.2009.51.
[6]
Romero, A.I.; Parentis, M.L.; Habert, A.C.; Gonzo, E.E. Synthesis of polyetherimide/silica hybrid membranes by the sol-gel process: Influence of the reaction conditions on the membrane properties. J. Mater. Sci. 2011, 46, 4701–4709, doi:10.1007/s10853-011-5380-4.
[7]
Boroglu, M.S.; Gurkaynak, M.A. The preparation of novel silica modified polyimide membranes: Synthesis, characterization, and gas separation properties. Polym. Adv. Technol. 2011, 22, 545–553, doi:10.1002/pat.1543.
[8]
Kim, Y.H. Hyperbranched polymers 10 years after. J. Polym. Sci. A Polym. Chem. 2004, 36, 1685–1698, doi:10.1002/(SICI)1099-0518(199808)36:11<1685::AID-POLA1>3.0.CO;2-R.
[9]
Gao, C.; Yan, D. Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 2004, 29, 183–275, doi:10.1016/j.progpolymsci.2003.12.002.
[10]
Suzuki, T.; Yamada, Y. Characterization of 6FDA-based hyperbranched and linear polyimide–silica hybrid membranes by gas permeation and 129Xe NMR measurements. J. Polym. Sci. B Polym. Phys. 2006, 44, 291–298, doi:10.1002/polb.20692.
[11]
Suzuki, T.; Yamada, Y.; Sakai, J. Gas transport properties of ODPA-TAPOB hyperbranched polyimide–silica hybrid membranes. High Perform. Polym. 2006, 18, 655–664, doi:10.1177/0954008306068228.
[12]
Suzuki, T.; Yamada, Y. Effect of end group modification on gas transport properties of 6FDA-TAPOB hyperbranched polyimide–silica hybrid membranes. High Perform. Polym. 2007, 19, 553–564, doi:10.1177/0954008307081197.
[13]
Suzuki, T.; Yamada, Y. Synthesis and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes. J. Appl. Polym. Sci. 2013, 127, 316–322, doi:10.1002/app.37893.
[14]
Suzuki, T.; Yamada, Y.; Itahashi, K. 6FDA-TAPOB hyperbranched polyimide–silica hybrids for gas separation membranes. J. Appl. Polym. Sci. 2008, 109, 813–819, doi:10.1002/app.28145.
[15]
Miki, M.; Suzuki, T.; Yamada, Y. Structure–property relationships of hyperbranched polyimide–silica hybrid membranes with different degrees of modification. J. Appl. Polym. 2013, 130, 54–62, doi:10.1002/app.39011.
[16]
Takeichi, T.; Stille, J.K. Star and liner imide oligomers containing reactive end caps: Preparation and thermal properties. Macromolecules 1986, 19, 2093–2102, doi:10.1021/ma00162a001.
[17]
Prabhakar, R.S.; Freeman, B.D.; Roman, I. Gas and vapor sorption and permeation in poly(2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole-co-tetrafluoroethylene). Macromolecules 2004, 37, 7688–7697, doi:10.1021/ma048909f.
[18]
Muruganandam, N.; Koros, W.J.; Paul, D.R. Gas sorption and transport in substituted polycarbonates. J. Polym. Sci. B Polym. Phys. 1987, 25, 1999–2026, doi:10.1002/polb.1987.090250917.
[19]
Morisato, A.; Shen, H.C.; Sankar, S.S.; Freeman, B.D.; Pinnau, I.; Casillas, C.G. Polymer characterization and gas permeability of poly(1-trimethylsilyl-1-propyne) [PTMST], poly(1-phenyl-1-propyne) [PPP], and PTMSP/PPP blends. J. Polym. Sci. B Polym. Phys. 1996, 34, 2209–2222, doi:10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9.
[20]
Weinkauf, D.H.; Kim, H.D.; Paul, D.R. Gas transport properties of liquid crystalline poly(p-phenyleneterephthalamide). Macromolecules 1992, 25, 788–796, doi:10.1021/ma00028a044.
[21]
Chen, H.; Yin, J. Synthesis and characterization of hyperbranched polyimides with good organosolubility and thermal properties based on new triamine and conventional dianhydrides. J. Polym. Sci. A Polym. Chem. 2002, 40, 3804–3814, doi:10.1002/pola.10475.
[22]
Fang, J.; Kita, H.; Okamoto, K. Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization. Macromolecules 2000, 33, 4639–4646, doi:10.1021/ma9921293.
[23]
Hibshman, C.; Cornelius, C.J.; Marand, E. The gas separation effects on annealing polyimide–organosilicate hybrid membranes. J. Membr. Sci. 2003, 211, 25–40, doi:10.1016/S0376-7388(02)00306-X.
[24]
Tomokiyo, N.; Yamada, Y.; Suzuki, T.; Oku, J. Preparation and characterization of hyperbranched polyimide–colloidal silica hybrids. Polym. Prep. Jpn. 2006, 55, 5175–5176.
[25]
Suzuki, T.; Yamada, Y.; Tsujita, Y. Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane. Polymer 2004, 45, 7167–7171, doi:10.1016/j.polymer.2004.08.025.
[26]
Suzuki, T.; Yamada, Y. Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes. Polym. Bull. 2005, 53, 139–146, doi:10.1007/s00289-004-0322-9.
[27]
Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide–clay hybrid films. J. Polym. Sci. A Polym. Chem. 1997, 35, 2289–2294, doi:10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9.
[28]
Park, H.B.; Kim, J.K.; Nam, S.Y.; Lee, Y.M. Imide-siloxane block copolymer/silica hybrid membranes: Preparation, characterization and gas separation properties. J. Membr. Sci. 2003, 220, 59–73, doi:10.1016/S0376-7388(03)00215-1.
Merkel, T.C.; Toy, L.G.; Andrady, A.L.; Gracz, H.; Stejskal, E.O. Investigation of enhanced free volume in nanosilica-filled poly(1-trimethylsilyl-1-propyne) by 129Xe NMR spectroscopy. Macromolecules 2003, 36, 353–358, doi:10.1021/ma0256690.
[31]
Andrady, A.L.; Merkel, T.C.; Toy, L.G. Effect of particle size on gas permeability of filled superglassy polymers. Macromolecules 2004, 37, 4329–4331, doi:10.1021/ma049510u.
[32]
Hill, R.J. Diffusive permeability and selectivity of nanocomposite membranes. Ind. Eng. Chem. Res. 2006, 45, 6890–6898, doi:10.1021/ie0512035.
[33]
Hill, R.J. Reverse-selective diffusion in nanocomposite membranes. Phys. Rev. Lett. 2006, 96, 216001:1–216001:4.
[34]
Zhang, Q.G.; Liu, Q.L.; Zhu, A.M.; Xiong, Y.; Zhang, X.H. Characterization and permeation performance of novel organic-inorganic hybrid membranes of poly(vinyl alcohol)/1,2-bis(triethoxysilyl)ethane. J. Phys. Chem. B 2008, 112, 16559–16565, doi:10.1021/jp807573g.
[35]
Okamoto, K.; Tanaka, K.; Kita, H.; Ishida, M.; Kakimoto, M.; Imai, Y. Gas permeability and permselectivity of polyimides prepared from 4,4′-diaminotriphenylamine. Polym. J. 1992, 24, 451–457, doi:10.1295/polymj.24.451.
[36]
Freeman, B.D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1992, 32, 375–380, doi:10.1021/ma9814548.
[37]
Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185, doi:10.1016/0376-7388(91)80060-J.
[38]
Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400, doi:10.1016/j.memsci.2008.04.030.
[39]
Fang, J.; Kita, H.; Okamoto, K. Gas permeation properties of hyperbranched polyimide membranes. J. Membr. Sci. 2001, 182, 245–256, doi:10.1016/S0376-7388(00)00571-8.
[40]
Kim, T.H.; Koros, W.J.; Husk, G.R.; O’brien, K.C. Relationship between gas separation properties and chemical structure in a series of aromatic polyimides. J. Membr. Sci. 1998, 37, 45–62.
[41]
Boehme, R.F.; Cargill, G.S., III. X-ray Scattering Measurements Demonstrating In-Plane Anisotropy in Kapton Polyimide Films. In Polyimides; Mittal, K.L., Ed.; Plenum Press: New York, NY, USA, 1984.