全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Transparent Conductive Films Fabricated from Polythiophene Nanofibers Composited with Conventional Polymers

DOI: 10.3390/polym5041325

Keywords: conducting polymer, nanofiber, transparent conductive film, poly(3-hexylthiophene), composite film

Full-Text   Cite this paper   Add to My Lib

Abstract:

Transparent, conductive films were prepared by compositing poly(3-hexylthiophene) (P3HT) nanofibers with poly(methyl methacrylate) (PMMA). The transparency, conductivity, atmospheric stability, and mechanical strength of the resulting nanofiber composite films when doped with AuCl 3 were evaluated and compared with those of P3HT nanofiber mats. The conductivity of the nanofiber composite films was 4.1 S?cm ?1, which is about seven times less than that which was previously reported for a nanofiber mat with the same optical transmittance (~80%) reported by Aronggaowa et al. The time dependence of the transmittance, however, showed that the doping state of the nanofiber composite films in air was more stable than that of the nanofiber mats. The fracture stress of the nanofiber composite film was determined to be 12.3 MPa at 3.8% strain.

References

[1]  Lee, J.Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692, doi:10.1021/nl073296g.
[2]  De, S.; Higgins, T.M.; Lyons, P.E.; Doherty, E.M.; Nirmalraj, P.N.; Blau, W.J.; Boland, J.J.; Coleman, J.N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774, doi:10.1021/nn900348c.
[3]  Zhang, H.; Li, C. Chemical synthesis of transparent and conducting polyanilinepoly(ethylene terephthalate) composite films. Synth.Met. 1991, 44, 143–146, doi:10.1016/0379-6779(91)91829-Y.
[4]  Cao, Y.; Treacy, G.M.; Smith, P.; Heeger, A.J. Optical-quality transparent conductive polyaniline films. Synth. Met. 1993, 57, 3526–3531, doi:10.1016/0379-6779(93)90470-H.
[5]  Cao, Y.; Treacy, G.M.; Smith, P.; Heeger, A.J. Solution-cast films of polyaniline: Optical-quality transparent electrodes. Appl. Phys. Lett. 1992, 60, 2711–2713, doi:10.1063/1.106852.
[6]  Byun, S.W.; Im, S.S. Degradation kinetics of electrical conductivity in transparent polyaniline-nylon 6 composite films. Synth. Met. 1995, 69, 219–220, doi:10.1016/0379-6779(94)02423-V.
[7]  Wan, M.X.; Li, M.; Li, J.C.; Liu, Z.X. Transparent and conducting coatings of polyaniline composite. Thin Solid Films 1995, 259, 188–193, doi:10.1016/0040-6090(94)06394-X.
[8]  Jonas, F.; Krafft, W.; Muys, B. Poly(3,4-ethylenedioxythiophene): Conductive coatings, technical applications and properties. Macromol. Symp. 1995, 100, 169–173, doi:10.1002/masy.19951000128.
[9]  Groenendaal, L.B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 2000, 12, 481–494, doi:10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C.
[10]  Yan, H.; Jo, T.; Okuzaki, H. Highly conductive and transparent poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) thin films. Polym. J. 2009, 41, 1028–1029, doi:10.1295/polymj.PJ2009143.
[11]  Apperloo, J.J.; van Haare, J.A.E.H.; Janssen, R.A.J. Transparent highly oxidized conjugated polymer films from solution. Synth. Met. 1999, 101, 417–420, doi:10.1016/S0379-6779(98)00325-7.
[12]  Aronggaowa, B.; Kawasaki, M.; Shimomura, T. Thin, transparent conductive films fabricated from conducting polymer nanofibers. Polym. J. 2013, doi:10.1038/pj.2012.214.
[13]  Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Comp. 2004, 25, 630–645, doi:10.1002/pc.20058.
[14]  Winey, K.I.; Vaia, R.A. Polymer nanocomposites. MRS Bull. 2007, 32, 314–322, doi:10.1557/mrs2007.229.
[15]  Maruyama, B.; Alam, H. Carbon nanotubes and nanofibers in composite materials. SAMPE J. 2002, 38, 59–70.
[16]  Ong, B.S.; Wu, Y.L.; Liu, P.; Gardner, S. High-performance semiconducting polythiophenes for organic thin-film transistors. J. Am. Chem. Soc. 2004, 126, 3378–3379, doi:10.1021/ja039772w.
[17]  McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; Macdonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.M.; et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006, 5, 328–333, doi:10.1038/nmat1612.
[18]  Narkis, M.; Tobolsky, A.V. Chemically crosslinked polyethylene: Modulus–temperature relations and heat stability. J. Appl. Polym. Sci. 1969, 13, 2257–2263, doi:10.1002/app.1969.070131101.
[19]  Meyer, J. Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polym. Eng. Sci. 1973, 13, 462–468, doi:10.1002/pen.760130611.
[20]  Gubbels, F.; Jér?ome, R.; Vanlathem, E.; Deltour, R.; Blacher, S.; Brouers, F. Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem. Mater. 1998, 10, 1227–1235, doi:10.1021/cm970594d.
[21]  Zhang, C.; Yi, X.S.; Yui, H.; Asai, S.; Sumita, M.J. Morphology and electrical properties of short carbon fiber-filled polymer blends: High-density polyethylene/poly(methyl methacrylate). Appl. Polym. Sci. 1998, 69, 1813–1819, doi:10.1002/(SICI)1097-4628(19980829)69:9<1813::AID-APP16>3.0.CO;2-M.
[22]  Lagrève, C.; Feller, J.F.; Linossier, I.; Levesque, G. Poly(butylene terephthalate)/poly(ethylene-co-alkyl acrylate)/carbon black conductive composites: Influence of composition and morphology on electrical properties. Polym. Eng. Sci. 2001, 41, 1124–1132, doi:10.1002/pen.10813.
[23]  Feller, J.F. Conductive polymer composites: Influence of extrusion conditions on positive temperature coefficient effect (PTC) of poly(butylene terephthalate)/poly(olefin)-carbon black blends. J. Appl. Polym. Sci. 2004, 91, 2151–2157, doi:10.1002/app.13337.
[24]  Cheah, K.; Forsyth, M.; Simon, G.P. Conducting composite using an immiscible polymer blend matrix. Synth. Met. 1999, 102, 1232–1233, doi:10.1016/S0379-6779(98)01436-2.
[25]  Boiteux, G.; Fournier, J.; Issotier, D.; Seytre, G.; Marichy, G. Conductive thermoset composites: PTC effect. Synth. Met. 1999, 102, 1234–1235, doi:10.1016/S0379-6779(98)01432-5.
[26]  Weber, I.; Schwartz, P. Monitoring bending in carbon-fibre/epoxy composite strands: A comparison between mechanical and resistance techniques. Comp. Sci. Technol. 2001, 61, 849–853, doi:10.1016/S0266-3538(01)00028-8.
[27]  lcakova, J.; Saha, P.; Kresalek, V.; Quadrat, O. Pre-exponential factor and activation energy of electrical conductivity in polyester resin/carbon fibre composites. Synth. Met. 2000, 113, 83–88, doi:10.1016/S0379-6779(99)00454-3.
[28]  Severin, E.J.; Doleman, B.J.; Lewis, N.S. An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors. Anal. Chem. 2000, 72, 658–668, doi:10.1021/ac9910278.
[29]  Munoz, B.C.; Steinthal, G.; Sunshine, S. Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose. Sens. Rev. 1999, 19, 300–305, doi:10.1108/02602289910294745.
[30]  Lundberg, B.; Sundquist, B.J. Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: Application as a pressure and gas concentration transducer. Appl. Phys. 1986, 60, 1074–1079.
[31]  Chen, J.; Tsubokawa, N. Novel gas sensor from polymer-grafted carbon black: Vapor response of electric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)-grafted carbon black. J. Appl. Polym. Sci. 2000, 77, 2437–2447, doi:10.1002/1097-4628(20000912)77:11<2437::AID-APP12>3.0.CO;2-F.
[32]  Srivastava, S.; Tchoudakov, R.; Narkis, M.A. Preliminary investigation of conductive immiscible polymer blends as sensor materials. Polym. Eng. Sci. 2000, 40, 1522–1528, doi:10.1002/pen.11281.
[33]  Narkis, M.; Srivastava, S.; Tchoudakov, R.; Breuer, O. Sensors for liquids based on conductive immiscible polymer blends. Synth. Met. 2000, 113, 29–34, doi:10.1016/S0379-6779(00)00187-9.
[34]  Chen, X.D.; Jiang, Y.D.; Wu, Z.M.; Li, D.; Yang, J.D. Morphology and gas-sensitive properties of polymer based composite films. Sens. Actuators B Chem. 2000, 66, 37–39, doi:10.1016/S0925-4005(99)00448-7.
[35]  Chen, J.; Tsubokawa, N. A Novel gas sensor from polymer-grafted carbon black: Responsiveness of electric resistance of conducting composite from LDPE and PE-b-PEO-grafted carbon black in various vapors. Polym. Adv. Technol. 2000, 11, 101–107, doi:10.1002/1099-1581(200003)11:3<101::AID-PAT950>3.0.CO;2-0.
[36]  Burl, M.C.; Sisk, B.C.; Vaid, T.P.; Lewis, N.S. Classification performance of carbon black-polymer composite vapor detector arrays as a function of array size and detector composition. Sens. Actuators B Chem. 2002, 87, 130–149, doi:10.1016/S0925-4005(02)00229-0.
[37]  Lin, C.W.; Hwang, B.G.; Lee, C.R. Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol)thin film exposed to ethanol vapors. J. Appl. Polym. Sci. 1999, 73, 2079–2087, doi:10.1002/(SICI)1097-4628(19990912)73:11<2079::AID-APP3>3.0.CO;2-1.
[38]  Qiu, L.Z.; Lim, J.A.; Wang, X.H.; Lee, W.H.; Hwang, M.; Cho, K. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors. Adv. Mater. 2008, 20, 1141–1145, doi:10.1002/adma.200702505.
[39]  Qiu, L.; Lee, W.H.; Wang, X.; Kim, J.S.; Lim, J.A.; Kwak, D.; Cho, K. Organic thin-film transistors based on polythiophene nanowires embedded in insulating polymer. Adv. Mater. 2009, 21, 1349–1353, doi:10.1002/adma.200802880.
[40]  Lim, J.A.; Kim, J.H.; Qiu, L.Z.; Lee, W.H.; Lee, H.S.; Kwak, D.; Cho, K. Inkjet-printed single-droplet organic transistors based on semiconductor nanowires embedded in insulating polymers. Adv. Funct. Mater. 2010, 20, 3292–3297, doi:10.1002/adfm.201000528.
[41]  Yoshida, K.; Kawasaki, M.; Toda, Y.; Yamashita, S.; Shimomura, T. Microscopic conduction pathways of poly(3-hexylthiophene) nanofibers embedded in polymer film. Polym. J. 2012, 44, 371–374, doi:10.1038/pj.2012.1.
[42]  Ahlskog, M. Stability studies on AuCl3-doped poly(3-hexylthiophene): Comparison with FeCl3 doping. Synth. Met. 1995, 72, 197–200, doi:10.1016/0379-6779(94)02328-V.
[43]  Shimomura, T.; Takahashi, T.; Ichimura, Y.; Nakagawa, S.; Noguchi, K.; Heike, S.; Hasuizume, T. Relationship between structural coherence and intrinsic carrier transport in an isolated poly(3-hexylthiophene) nanofiber. Phys. Rev. B 2011, 83, 115314:1–115314:10.
[44]  Chung, T.C.; Kaufman, J.H.; Heeger, A.J.; Wudl, F. Charge storage in doped poly(thiophene): Optical and electrochemical studies. Phys. Rev. B 1981, 30, 702–710.
[45]  Maissel, L.I. Electrical Properties of Metallic Thin Films. In Handbook of Thin Film Technology; Maissel, L.I., Glang, R., Eds.; McGraw-Hill: New York, NY, USA, 1970. Chapter 13.
[46]  Kivelson, S.; Heeger, A.J. First order phase transition to a metallic state in PA: A strong-coupling polaronic metal. Phys. Rev. Lett. 1985, 55, 308–311, doi:10.1103/PhysRevLett.55.308.
[47]  Kim, J.; Sohn, D.; Sung, Y.; Kim, E.-R. Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synth. Met. 2003, 132, 309–313.
[48]  Hsu, S.L. Poly(methyl methacrylate). In Polymer Data Handbook; Mark, J.E., Ed.; Oxford University Press: Oxford, UK, 1999; p. 656.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133