全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

DOI: 10.3390/polym5041272

Keywords: conjugated polymer, thin film, morphology, structure, chain rigidity, solution aggregation, processing procedures

Full-Text   Cite this paper   Add to My Lib

Abstract:

The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecular arrangement of such functional polymer architectures by controlling the polymer chain rigidity, polymer solution aggregation, suitable processing procedures, etc. These basic elements in intrinsic properties and processing strategy described here would be helpful to understand the correlation between morphology and charge transport properties and guide the preparation of efficient functional conjugated polymer films correspondingly.

References

[1]  Wang, C.L.; Dong, H.L. Semiconducting pi-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267, doi:10.1021/cr100380z.
[2]  Kim, F.S.; Ren, G.Q. One-dimensional nanostructures of pi-conjugated molecular systems: Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 2011, 23, 682–732, doi:10.1021/cm102772x.
[3]  Facchetti, A. Π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 2011, 23, 733–758, doi:10.1021/cm102419z.
[4]  Mei, J.G.; Diao, Y. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 2013, 135, 6724–6746, doi:10.1021/ja400881n.
[5]  AlSalhi, M.S.; Alam, J. Recent advances in conjugated polymers for light emitting devices. Int. J. Mol. Sci. 2011, 12, 2036–2054, doi:10.3390/ijms12032036.
[6]  Tang, C.; Liu, X.D. Recent progress in polymer white light-emitting materials and devices. Macromol. Chem. Phys. 2013, 214, 314–342, doi:10.1002/macp.201200305.
[7]  Heeger, A.J. Semiconducting polymers: The third generation. Chem. Soc. Rev. 2010, 39, 2354–2371, doi:10.1039/b914956m.
[8]  Krebs, F.C. Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Solar Energy Mater. Solar Cells 2009, 93, 465–475, doi:10.1016/j.solmat.2008.12.012.
[9]  Amb, C.M.; Craig, M.R. Aesthetically pleasing conjugated polymer: Fullerene blends for blue-green solar cells via roll-to-roll processing. ACS Appl. Mater. Interfaces 2012, 4, 1847–1853, doi:10.1021/am300156p.
[10]  Yue, W.; Larsen-Olsen, T.T. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers. J. Mater. Chem. A 2013, 1, 1785–1793, doi:10.1039/c2ta00695b.
[11]  Nielsen, C.B.; Turbiez, M. Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 2013, 25, 1859–1880, doi:10.1002/adma.201201795.
[12]  Usta, H.; Facchetti, A. N-channel semiconductor materials sesign for organic complementary circuits. Acc. Chem. Res. 2011, 44, 501–510, doi:10.1021/ar200006r.
[13]  Sista, P.; Biewer, M.C. Benzo[1,2-b:4,5-b′]dithiophene building block for the synthesis of semiconducting polymers. Macromol. Rapid Commun. 2012, 33, 9–20, doi:10.1002/marc.201100671.
[14]  Huo, L.J.; Hou, J.H. Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers: Band gap and energy level control and their application in polymer solar cells. Polym. Chem. 2011, 2, 2453–2461, doi:10.1039/c1py00197c.
[15]  Balan, A.; Baran, D. Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polym. Chem. 2011, 2, 1029–1043, doi:10.1039/c1py00007a.
[16]  Liu, Y.; Liu, Y.Q. High-mobility conjugated polymers based on fused-thiophene building blocks. Macromol. Chem. Phys. 2011, 212, 428–443, doi:10.1002/macp.201000677.
[17]  Kang, I.; Yun, H.J. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 2013, 135, 14896–14899, doi:10.1021/ja405112s.
[18]  Lu, L.Y.; Luo, Z.Q. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 2013, 13, 59–64, doi:10.1021/nl3034398.
[19]  Salleo, A.; Kline, R.J. Microstructural characterization and charge transport in thin films of conjugated polymers. Adv. Mater. 2010, 22, 3812–3838, doi:10.1002/adma.200903712.
[20]  Park, Y.W. Editorial for the conducting polymers for carbon electronics themed issue. Chem. Soc. Rev. 2010, 39, 2352–2353, doi:10.1039/c005384h.
[21]  Giridharagopal, R.; Ginger, D.S. Characterizing morphology in bulk heterojunction organic photovoltaic systems. J. Phys. Chem. Lett. 2010, 1, 1160–1169, doi:10.1021/jz100100p.
[22]  Chen, W.; Nikiforov, M.P. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 2012, 5, 8045–8074, doi:10.1039/c2ee22056c.
[23]  Rivnay, J.; Mannsfeld, S.C.B. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 2012, 112, 5488–5519, doi:10.1021/cr3001109.
[24]  Brinkmann, M. Structure and morphology control in thin films of regioregular poly(3-hexylthiophene). J. Polym. Sci. B Polym. Phys. 2011, 49, 1218–1233, doi:10.1002/polb.22310.
[25]  Tsao, H.N.; Mullen, K. Improving polymer transistor performance via morphology control. Chem. Soc. Rev. 2010, 39, 2372–2386, doi:10.1039/b918151m.
[26]  Virkar, A.A.; Mannsfeld, S. Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv. Mater. 2010, 22, 3857–3875, doi:10.1002/adma.200903193.
[27]  Knaapila, M.; Monkman, A.P. Methods for controlling structure and photophysical properties in polyfluorene solutions and gels. Adv. Mater. 2013, 25, 1090–1108, doi:10.1002/adma.201204296.
[28]  Lim, J.A.; Liu, F. Polymer semiconductor crystals. Mater. Today 2010, 13, 14–24.
[29]  Vacha, M.; Habuchi, S. Conformation and physics of polymer chains: A single-molecule perspective. NPG Asia Mater. 2010, 2, 134–142, doi:10.1038/asiamat.2010.135.
[30]  Clark, J.; Silva, C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 2007, 98, 206406:1–206406:4.
[31]  Clark, J.; Chang, J.F. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 2009, 94, 163306:1–163306:4.
[32]  Spano, F.C. The spectral signatures of frenkel polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439, doi:10.1021/ar900233v.
[33]  Oelkrug, D.; Egelhaaf, H.J. Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers. Synth. Metals 1996, 76, 249–253, doi:10.1016/0379-6779(95)03464-1.
[34]  Spano, F.C. Excitons in conjugated oligomer aggregates, films, and crystals. Annu. Rev. Phys. Chem. 2006, 57, 217–243, doi:10.1146/annurev.physchem.57.032905.104557.
[35]  Fidder, H.; Knoester, J. Superradiant emission and optical dephasing in J-Aggregates. Chem. Phys. Lett. 1990, 171, 529–536, doi:10.1016/0009-2614(90)85258-E.
[36]  Niles, E.T.; Roehling, J.D. J-Aggregate behavior in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett. 2012, 3, 259–263, doi:10.1021/jz201509h.
[37]  Zhang, X.R.; Richter, L.J. Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J. Am. Chem. Soc. 2011, 133, 15073–15084, doi:10.1021/ja204515s.
[38]  Lee, H.S.; Lee, J.S. Crystallinity-controlled naphthalene-alt-diketopyrrolopyrrole copolymers for high-performance ambipolar field effect transistors. J. Phys. Chem. C 2012, 116, 26204–26213, doi:10.1021/jp309213h.
[39]  Kim, J.W.; Baeg, K.J. Optimal ambipolar charge transport of thienylenevinylene-based polymer semiconductors by changes in conformation for high-performance organic thin film transistors and inverters. Chem. Mater. 2013, 25, 1572–1583, doi:10.1021/cm303908f.
[40]  Gao, J.; Kamps, A. Encapsulation of poly(3-hexylthiophene) J-aggregate nanofibers with an amphiphilic block copolymer. Langmuir 2012, 28, 16401–16407, doi:10.1021/la3034337.
[41]  Jimison, L.H.; Toney, M.F. Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 2009, 21, 1568–1572, doi:10.1002/adma.200802722.
[42]  Lee, M.J.; Gupta, D. Anisotropy of charge transport in a uniaxially aligned and chain-extended, high-mobility, conjugated polymer semiconductor. Adv. Funct. Mater. 2011, 21, 932–940, doi:10.1002/adfm.201001781.
[43]  Lan, Y.K.; Huang, C.I. Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly(3-hexylthiophene). J. Phys. Chem. B 2009, 113, 14555–14564, doi:10.1021/jp904841j.
[44]  Kline, R.J.; McGehee, M.D. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 2005, 38, 3312–3319, doi:10.1021/ma047415f.
[45]  Bolsee, J.C.; Oosterbaan, W.D. The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv. Funct. Mater. 2013, 23, 862–869, doi:10.1002/adfm.201102078.
[46]  Street, R.A.; Northrup, J.E. Transport in polycrystalline polymer thin-film transistors. Phys. Rev. B 2005, 71, 165202:1–165202:13.
[47]  Crossland, E.J.W.; Tremel, K. Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv. Mater. 2012, 24, 839–844, doi:10.1002/adma.201104284.
[48]  Zhang, X.R.; Hudson, S.D. In-plane liquid crystalline texture of high-performance thienothiophene copolymer thin films. Adv. Funct. Mater. 2010, 20, 4098–4106, doi:10.1002/adfm.201001232.
[49]  Schuettfort, T.; Watts, B. Microstructure of polycrystalline PBTTT films: Domain mapping and structure formation. ACS Nano 2012, 6, 1849–1864, doi:10.1021/nn2051295.
[50]  Liu, J.Y.; Zhang, R. Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. J. Am. Chem. Soc. 2008, 130, 13167–13176, doi:10.1021/ja803077v.
[51]  Lee, J.B.; Kim, K.H. High-performance amorphous donor-acceptor conjugated polymers containing x-shaped anthracene-based monomer and 2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for organic thin-film transistors. J. Polym. Sci. A Polym. Chem. 2012, 50, 2809–2818, doi:10.1002/pola.26078.
[52]  Aiyar, A.R.; Hong, J.I. Tunable crystallinity in regioregular poly(3-hexylthiophene) thin films and its impact on field effect mobility. Adv. Funct. Mater. 2011, 21, 2652–2659, doi:10.1002/adfm.201002729.
[53]  Yu, Z.; Fang, J. Self-assembly of well-defined poly(3-hexylthiophene) nanostructures toward the structure-property relationship determination of polymer solar cells. J. Phys. Chem. C 2012, 116, 23858–23863, doi:10.1021/jp304273y.
[54]  Lee, J.S.; Son, S.K. Importance of solubilizing group and backbone planarity in low band gap polymers for high performance ambipolar field-effect transistors. Chem. Mater. 2012, 24, 1316–1323, doi:10.1021/cm2037487.
[55]  Kim, D.H.; Ayzner, A.L. Comparison of the photovoltaic characteristics and nanostructure of fullerenes blended with conjugated polymers with siloxane-terminated and branched aliphatic side chains. Chem. Mater. 2013, 25, 431–440, doi:10.1021/cm303572d.
[56]  Osaka, I.; Kakara, T. Naphthodithiophene-naphthobisthiadiazole copolymers for solar cells: Alkylation drives the polymer backbone flat and promotes efficiency. J. Am. Chem. Soc. 2013, 135, 8834–8837, doi:10.1021/ja404064m.
[57]  Liu, J.G.; Sun, Y. Oriented poly(3-hexylthiophene) nanofibril with the π–π stacking growth direction by solvent directional evaporation. Langmuir 2011, 27, 4212–4219, doi:10.1021/la105109t.
[58]  Muller, C.; Aghamohammadi, M. One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv. Funct. Mater. 2013, 23, 2368–2377.
[59]  Beniek, L.; Leclerc, N. Large scale alignment and charge transport anisotropy of pBTTT films oriented by high temperature rubbing. Macromolecules 2013, 46, 4014–4023, doi:10.1021/ma400516d.
[60]  Lu, G.H.; Li, L.G. Achieving perpendicular alignment of rigid polythiophene backbones to the substrate by using solvent-vapor treatment. Adv. Mater. 2007, 19, 3594–3598, doi:10.1002/adma.200700014.
[61]  Lu, G.H.; Li, L.G. Morphology and crystalline transition of poly(3-butylthiophene) associated with its polymorphic modifications. Macromolecules 2008, 41, 2062–2070, doi:10.1021/ma7026512.
[62]  Aryal, M.; Trivedi, K. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography. ACS Nano 2009, 3, 3085–3090, doi:10.1021/nn900831m.
[63]  Rivnay, J.; Toney, M.F. Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. Adv. Mater. 2010, 22, 4359–4363, doi:10.1002/adma.201001202.
[64]  DeLongchamp, D.M.; Vogel, B.M. Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem. Mater. 2005, 17, 5610–5612, doi:10.1021/cm0513637.
[65]  Yang, H.H.; LeFevre, S.W. Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents. Appl. Phys. Lett. 2007, doi:10.1063/1.2734387.
[66]  Wang, S.; Kiersnowski, A. Microstructure evolution and device performance in solution-processed polymeric field-effect transistors: The key role of the first monolayer. J. Am. Chem. Soc. 2012, 134, 4015–4018, doi:10.1021/ja211630w.
[67]  Wang, S.H.; Pisula, W. Nanofiber growth and alignment in solution processed n-type naphthalene-diimide-based polymeric field-effect transistors. J. Mater. Chem. 2012, 22, 24827–24831, doi:10.1039/c2jm35351b.
[68]  Zhao, L.H.; Png, R.Q. Role of borderline solvents to induce pronounced extended-chain lamellar order in π-stackable polymers. Macromolecules 2011, 44, 9692–9702, doi:10.1021/ma201165y.
[69]  Adachi, T.; Brazard, J. Regioregularity and single polythiophene chain conformation. J. Phys. Chem. Lett. 2011, 2, 1400–1404, doi:10.1021/jz200546x.
[70]  Mena-Osteritz, E.; Meyer, A. Two-dimensional crystals of poly(3-alkylthiophene)s: Direct visualization of polymer folds in submolecular resolution. Angew. Chem. Int. Ed. 2000, 39, 2680–2684.
[71]  Brinkmann, M.; Rannou, P. Molecular weight dependence of chain packing and semicrystalline structure in oriented films of regioregular poly(3-hexylthiophene) revealed by high-resolution transmission electron microscopy. Macromolecules 2009, 42, 1125–1130, doi:10.1021/ma8023415.
[72]  Liu, J.; Mikhaylov, I.A. Insight into how molecular structures of thiophene-based conjugated polymers affect crystallization behaviors. Polymer 2011, 52, 2302–2309, doi:10.1016/j.polymer.2011.03.026.
[73]  Xiao, X.L.; Wang, Z.B. Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation. J. Phys. Chem. B 2010, 114, 7452–7460, doi:10.1021/jp911525d.
[74]  Liu, C.F.; Wang, Q.L. Extended-chain lamellar crystals of monodisperse polyfluorenes. Polymer 2013, 54, 2459–2465, doi:10.1016/j.polymer.2013.02.040.
[75]  Kim, D.H.; Han, J.T. Single-crystal polythiophene microwires grown by self-assembly. Adv. Mater. 2006, 18, 719–723, doi:10.1002/adma.200502442.
[76]  Liu, C.F.; Wang, Q.L. Insight into lamellar crystals of monodisperse polyfluorenes—Fractionated crystallization and the crystal’s stability. Polymer 2013, 54, 1251–1258, doi:10.1016/j.polymer.2012.12.054.
[77]  Rahimi, K.; Botiz, I. Controllable processes for generating large single crystals of poly(3-hexylthiophene). Angew. Chem. Int. Ed. 2012, 51, 11131–11135, doi:10.1002/anie.201205653.
[78]  Kim, J.H.; Lee, D.H. Novel polymer nanowire crystals of diketopyrrolopyrrole-based copolymer with excellent charge transport properties. Adv. Mater. 2013, 25, 4102–4106, doi:10.1002/adma.201301536.
[79]  Wang, H.Y.; Liu, J.G. Fibrillar morphology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: Effects of conformational transition and conjugate length. J. Phys. Chem. B 2013, 117, 5996–6006, doi:10.1021/jp402039g.
[80]  Hultell, M.; Stafstrom, S. Impact of ring torsion on the intrachain mobility in conjugated polymers. Phys. Rev. B 2007, 75, 104304:1–104304:7.
[81]  Cho, H.H.; Kang, T.E. Effect of incorporated nitrogens on the planarity and photovoltaic performance of donor-acceptor copolymers. Macromolecules 2012, 45, 6415–6423, doi:10.1021/ma301362t.
[82]  Ong, B.S.; Wu, Y. Thiophene polymer semiconductors for organic thin-film transistors. Chem. Eur. J. 2008, 14, 4766–4778, doi:10.1002/chem.200701717.
[83]  Kim, J.; Lim, B. Highly soluble poly(thienylenevinylene) derivatives with charge-carrier mobility exceeding 1 cm2?V?1?s?1. Chem. Mater. 2011, 23, 4663–4665, doi:10.1021/cm2021802.
[84]  Lee, W.H.; Kong, H. Field-effect transistors based on ppv derivatives as a semiconducting layer. J. Polym. Sci. A Polym. Chem. 2009, 47, 111–120, doi:10.1002/pola.23126.
[85]  Stevens, D.M.; Qin, Y. Enhancement of the morphology and open circuit voltage in bilayer polymer/fullerene solar cells. J. Phys. Chem. C 2009, 113, 11408–11415, doi:10.1021/jp902198y.
[86]  Lei, T.; Cao, Y. Systematic investigation of isoindigo-based polymeric field-effect transistors: Design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 2012, 24, 1762–1770, doi:10.1021/cm300117x.
[87]  Ong, B.S.; Wu, Y.L. Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv. Mater. 2005, 17, 1141–1144, doi:10.1002/adma.200401660.
[88]  McCulloch, I.; Heeney, M. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006, 5, 328–333, doi:10.1038/nmat1612.
[89]  Li, J.; Qin, F. High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles. Chem. Mater. 2008, 20, 2057–2059, doi:10.1021/cm703567g.
[90]  Pan, H.L.; Li, Y.N. Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 2007, 129, 4112–4113, doi:10.1021/ja067879o.
[91]  Osaka, I.; Abe, T. High-mobility semiconducting naphthodithiophene copolymers. J. Am. Chem. Soc. 2010, 132, 5000–5001, doi:10.1021/ja101125p.
[92]  Osaka, I.; Zhang, R. High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. J. Am. Chem. Soc. 2009, 131, 2521–2529, doi:10.1021/ja801475h.
[93]  Zhang, M.X.; Zhao, G.J. Heteroatomic effects on charge-transfer mobility of dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DATT) and its derivatives. J. Phys. Chem. C 2012, 116, 19197–19202, doi:10.1021/jp306311v.
[94]  Kang, I.; An, T.K. Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv. Mater. 2013, 25, 524–528, doi:10.1002/adma.201202867.
[95]  Lin, Y.Z.; Fan, H.J. Thiazole-based organic semiconductors for organic electronics. Adv. Mater. 2012, 24, 3087–3106, doi:10.1002/adma.201200721.
[96]  Osaka, I.; Saito, M. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Adv. Mater. 2012, 24, 425–430, doi:10.1002/adma.201103065.
[97]  Chen, Z.Y.; Lemke, H. High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv. Mater. 2010, 22, 2371–2375, doi:10.1002/adma.200903711.
[98]  Zhang, W.M.; Smith, J. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 2010, 132, 11437–11439, doi:10.1021/ja1049324.
[99]  Guo, X.G.; Kim, F.S. Naphthalene diimide-based polymer semiconductors: Synthesis, structure-property correlations, and n-channel and ambipolar field-effect transistors. Chem. Mater. 2012, 24, 1434–1442, doi:10.1021/cm2034273.
[100]  Yan, H.; Chen, Z.H. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686, doi:10.1038/nature07727.
[101]  Zhao, X.G.; Zhan, X.W. Electron transporting semiconducting polymers in organic electronics. Chem. Soc. Rev. 2011, 40, 3728–3743, doi:10.1039/c0cs00194e.
[102]  Li, Y.N.; Sonar, P. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 2013, 6, 1684–1710, doi:10.1039/c3ee00015j.
[103]  Beaujuge, P.M.; Amb, C.M. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1396–1407, doi:10.1021/ar100043u.
[104]  Ha, J.S.; Kim, K.H. 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5′-di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2?V?1?s?1 hole mobility in thin-film transistors. J. Am. Chem. Soc. 2011, 133, 10364–10367, doi:10.1021/ja203189h.
[105]  Chen, Z.Y.; Lee, M.J. High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv. Mater. 2012, 24, 647–652, doi:10.1002/adma.201102786.
[106]  Chen, H.J.; Guo, Y.L. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622, doi:10.1002/adma.201201318.
[107]  Lei, T.; Dou, J.H. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2?V?1?s?1 under ambient conditions. J. Am. Chem. Soc. 2013, 135, 12168–12171, doi:10.1021/ja403624a.
[108]  Sauvé, G.; Javier, A.E. Well-defined, high molecular weight poly(3-alkylthiophene)s in thin-film transistors: side chain invariance in field-effect mobility. J. Mater. Chem. 2010, 20, 3195–3201, doi:10.1039/c000172d.
[109]  Hu, Z.J.; Liu, J.H. Influence of backbone rigidness on single chain conformation of thiophene-based conjugated polymers. J. Phys. Chem. B 2013, 117, 4461–4467, doi:10.1021/jp308497k.
[110]  Beaujuge, P.M.; Pisula, W. Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. J. Am. Chem. Soc. 2009, 131, 7514–7515, doi:10.1021/ja900519k.
[111]  Deng, Y.F.; Chen, Y.G. Donor-acceptor conjugated polymers with dithienocarbazoles as donor units: Effect of structure on semiconducting properties. Macromolecules 2012, 45, 8621–8627, doi:10.1021/ma301864f.
[112]  Osaka, I.; Abe, T. Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. J. Am. Chem. Soc. 2011, 133, 6852–6860, doi:10.1021/ja201591a.
[113]  Brinkmann, M.; Gonthier, E. Segregated vs. mixed interchain stacking in highly oriented films of naphthalene diimide bithiophene copolymers. ACS Nano 2012, 6, 10319–10326, doi:10.1021/nn304213h.
[114]  Donley, C.L.; Zaumseil, J. Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2005, 127, 12890–12899, doi:10.1021/ja051891j.
[115]  Park, J.W.; Lee, D.H. Conformationally twisted semiconducting polythiophene derivatives with alkylthiophene side chain: High solubility and air stability. Macromolecules 2010, 43, 2118–2123, doi:10.1021/ma902396n.
[116]  Schroeder, B.C.; Nielsen, C.B. Benzotrithiophene co-polymers with high charge carrier mobilities in field-effect transistors. Chem. Mater. 2011, 23, 4025–4031, doi:10.1021/cm2015884.
[117]  Ren, X.K.; Wu, Y.C. Crystal structure and molecular packing behavior of poly(2,3-diphenyl-1,4-phenylenevinylene) derivatives containing alkyl side-chains. Macromolecules 2013, 46, 155–163, doi:10.1021/ma302082x.
[118]  Bolognesi, A.; Botta, C. Oriented thin films from soluble polythiophenes. Polym. Adv. Technol. 2003, 14, 537–543, doi:10.1002/pat.365.
[119]  Nagamatsu, S.; Misaki, M. Side-chain effects on friction-transferred polymer orientation. Polym. J. 2007, 39, 1300–1305, doi:10.1295/polymj.PJ2007062.
[120]  Higashi, T.; Yamasaki, N. Anisotropic properties of aligned π-conjugated polymer films fabricated by capillary action and their post-annealing effects. Appl. Phys. Express 2011, doi:10.1143/APEX.4.091602.
[121]  He, M.Q.; Li, J.F. Alkylsubstituted thienothiophene semiconducting materials: Structure-property relationships. J. Am. Chem. Soc. 2009, 131, 11930–11938, doi:10.1021/ja903895s.
[122]  Rieger, R.; Beckmann, D. Backbone curvature in polythiophenes. Chem. Mater. 2010, 22, 5314–5318, doi:10.1021/cm101577j.
[123]  Yazawa, K.; Inoue, Y. Molecular dynamics of regioregular poly(3-hexylthiophene) investigated by nmr relaxation and an interpretation of temperature dependent optical absorption. J. Phys. Chem. B 2010, 114, 1241–1248, doi:10.1021/jp910590d.
[124]  Oosterbaan, W.D.; Bolsee, J.C. Alkyl-chain-length-independent hole mobility via morphological control with poly(3-alkylthiophene) nanofibers. Adv. Funct. Mater. 2010, 20, 792–802, doi:10.1002/adfm.200901471.
[125]  Pankaj, S.; Beiner, M. Confined dynamics and crystallization in self-assembled alkyl nanodomains. J. Phys. Chem. B 2010, 114, 15459–15465, doi:10.1021/jp1072999.
[126]  Malik, S.; Nandi, A.K. Crystallization mechanism of regioregular poly(3-alkyl thiophene)s. J. Polym. Sci. B Polym. Phys. 2002, 40, 2073–2085, doi:10.1002/polb.10272.
[127]  Li, Z.; Tsang, S.W. Alternating copolymers of cyclopenta[2,1-b;3,4-b′] dithiophene and thieno[3,4-c]pyrrole-4,6-dione for high-performance polymer solar cells. Adv. Funct. Mater. 2011, 21, 3331–3336, doi:10.1002/adfm.201100708.
[128]  Yamamoto, T.; Ikai, T. Synthesis and characterization of thieno[3,4-b]thiophene-based copolymers bearing 4-substituted phenyl ester pendants: Facile fine-tuning of HOMO energy levels. Macromolecules 2011, 44, 6659–6662, doi:10.1021/ma201501g.
[129]  Kline, R.J.; DeLongchamp, D.M. Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 2007, 40, 7960–7965, doi:10.1021/ma0709001.
[130]  Wang, C.C.; Jimison, L.H. Microstructural origin of high mobility in high-performance poly(thieno-thiophene) thin-film transistors. Adv. Mater. 2010, 22, 697–701, doi:10.1002/adma.200902303.
[131]  Keg, P.; Lohani, A. Direct observation of alkyl chain interdigitation in conjugated polyquarterthiophene self-organized on graphite surfaces. Macromole. Rapid Commun. 2008, 29, 1197–1202, doi:10.1002/marc.200800012.
[132]  Meager, L.; Ashraf, R.S. Photocurrent Enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J. Am. Chem. Soc. 2013, 135, 11537–11540, doi:10.1021/ja406934j.
[133]  Kim, D.H.; Lee, J. Molecular weight-induced structural transition of liquid-crystalline polymer semiconductor for high-stability organic transistor. Adv. Funct. Mater. 2011, 21, 4442–4447, doi:10.1002/adfm.201101021.
[134]  Wu, S. Chain structure and entanglement. J. Polym. Sci. B Polym. Phys. 1989, 27, 723–741, doi:10.1002/polb.1989.090270401.
[135]  Wen, Y.H.; Lin, P.C. Dynamic structure factor for large aggregate clusters with internal motions: A self-consistent light-scattering study on conjugated polymer solutions. J. Phys. Chem. B 2011, 115, 14369–14380, doi:10.1021/jp208399z.
[136]  Huang, Y.; Cheng, H. Temperature induced structure evolution of regioregular poly(3-hexylthiophene) in dilute solution and its influence on thin film morphology. Macromolecules 2010, 43, 10031–10037, doi:10.1021/ma102168a.
[137]  Huang, Y.; Cheng, H. Unimer–aggregate equilibrium to large scale association of regioregular poly(3-hexylthiophene) in THF solution. Macromolecules 2011, 44, 5020–5026, doi:10.1021/ma200273u.
[138]  Rughooputh, S.D.D.V.; Hotta, S. Chromism of soluble polythienylenes. J. Polym. Sci. B Polym. Phys. 1987, 25, 1071–1078, doi:10.1002/polb.1987.090250508.
[139]  Vogelsang, J.; Brazard, J. Watching the annealing process one polymer chain at a time. Angew. Chem. Int. Ed. 2011, 50, 2257–2261, doi:10.1002/anie.201007084.
[140]  Steyrleuthner, R.; Schubert, M. Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology. J. Am. Chem. Soc. 2012, 134, 18303–18317, doi:10.1021/ja306844f.
[141]  Kohler, A.; Hoffmann, S.T. An order-disorder transition in the conjugated polymer MEH-PPV. J. Am. Chem. Soc. 2012, 134, 11594–11601, doi:10.1021/ja302408a.
[142]  Malik, S.; Nandi, A.K. Influence of alkyl chain length on the gelation mechanism of thermoreversible gels of regioregular poly(3-alkyl thiophenes) in xylene. J. Appl. Polym. Sci. 2007, 103, 2528–2537, doi:10.1002/app.25050.
[143]  Xu, Y.Z.; Liu, J.G. Formation of parallel aligned nano-fibrils of poly(3,3′′′-didodecylquaterthiophene) induced by the unimer coils in solution. RSC Adv. 2013, 3, 12069–12074, doi:10.1039/c3ra40719e.
[144]  Samitsu, S.; Shimomura, T. Effective production of poly(3-alkylthiophene) nanofibers by means of whisker method using anisole solvent: structural, optical, and electrical properties. Macromolecules 2008, 41, 8000–8010, doi:10.1021/ma801128v.
[145]  Xue, L.J.; Gao, X. The formation of different structures of poly(3-hexylthiophene) film on a patterned substrate by dip-coating from aged solution. Nanotechnology 2010, doi:10.1088/0957-4484/21/14/145303.
[146]  Zhao, K.; Xue, L. A new method to improve poly(3-hexyl thiophene) (P3HT) crystalline behavior: Decreasing chains entanglement to promote order?disorder transformation in solution. Langmuir 2010, 26, 471–477, doi:10.1021/la903381f.
[147]  Zhao, K.; Khan, H.U. Entanglement of conjugated polymer chains influences molecular self-assembly and carrier transport. Adv. Funct. Mater. 2013, doi:10.1002/adfm.201301007.
[148]  Wang, P.S.; Lu, H.H. Gel formation via physical cross-linking in the soluble conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], in solution by addition of alkalies. Macromolecules 2008, 41, 6500–6504, doi:10.1021/ma800076g.
[149]  Liu, J.; Shao, S. The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology. Org. Electron. 2010, 11, 775–783, doi:10.1016/j.orgel.2010.01.017.
[150]  Wang, H.Y.; Liu, J.G. Nano-fibrils formation of pBTTT via adding alkylthiol into solutions: Control of morphology and crystalline structure. Polymer 2013, 54, 948–957, doi:10.1016/j.polymer.2012.11.073.
[151]  Traiphol, R.; Charoenthai, N. Chain organization and photophysics of conjugated polymer in poor solvents: Aggregates, agglomerates and collapsed coils. Polymer 2007, 48, 813–826, doi:10.1016/j.polymer.2006.12.003.
[152]  Oh, J.Y.; Shin, M. Self-seeded growth of poly(3-hexylthiophene) (P3HT) nanofibrils by a cycle of cooling and heating in solutions. Macromolecules 2012, 45, 7504–7513, doi:10.1021/ma300958n.
[153]  Li, L.G.; Lu, G.H. Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. J. Mater. Chem. 2008, 18, 1984–1990, doi:10.1039/b719945g.
[154]  Park, Y.D.; Lee, H.S. Solubility-induced ordered polythiophene precursors for high-performance organic thin-film transistors. Adv. Funct. Mater. 2009, 19, 1200–1206, doi:10.1002/adfm.200801763.
[155]  Yan, H.; Yan, Y. Self-assembling branched and hyperbranched nanostructures of poly(3-hexylthiophene) by a solution process. J. Phys. Chem. C 2011, 115, 3257–3262, doi:10.1021/jp109776y.
[156]  Xu, W.; Li, L. Solvent-induced crystallization of poly(3-dodecylthiophene): Morphology and kinetics. J. Phys. Chem. B 2011, 115, 6412–6420, doi:10.1021/jp201044b.
[157]  Berson, S.; de Bettignies, R. Poly(3-hexylthiophene) fibers for photovoltaic applications. Adv. Funct. Mater. 2007, 17, 1377–1384, doi:10.1002/adfm.200600922.
[158]  He, M.; Ge, J. Fabricating polythiophene into highly aligned microwire film by fast evaporation of its whisker solution. Polymer 2010, 51, 2236–2243, doi:10.1016/j.polymer.2010.02.049.
[159]  Crossland, E.J.W.; Rahimi, K. Systematic control of nucleation density in poly(3-hexylthiophene) thin films. Adv. Funct. Mater. 2011, 21, 518–524, doi:10.1002/adfm.201001682.
[160]  Lu, G.H.; Tang, H.W. Enhanced charge transportation in semiconducting polymer/insulating polymer composites: The role of an interpenetrating bulk interface. Adv. Funct. Mater. 2010, 20, 1714–1720, doi:10.1002/adfm.200902281.
[161]  Benetti, E.M.; Causin, V. Conjugated polymers in cages: Templating poly(3-hexylthiophene) nanocrystals by inert gel matrices. Adv. Mater. 2012, 24, 5636–5641, doi:10.1002/adma.201202288.
[162]  Kim, F.S.; Jenekhe, S.A. Charge transport in poly(3-butylthiophene) nanowires and their nanocomposites with an insulating polymer. Macromolecules 2012, 45, 7514–7519, doi:10.1021/ma301016c.
[163]  Qiu, L.Z.; Lee, W.H. Organic thin-film transistors based on polythiophene nanowires embedded in insulating polymer. Adv. Mater. 2009, 21, 1349–1353, doi:10.1002/adma.200802880.
[164]  Qiu, L.Z.; Wang, X. Organic thin-film transistors based on blends of poly(3-hexylthiophene) and polystyrene with a solubility-induced low percolation threshold. Chem. Mater. 2009, 21, 4380–4386, doi:10.1021/cm900628j.
[165]  Kim, D.H.; Park, Y.D. Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films. Macromol. Rapid Commun. 2005, 26, 834–839, doi:10.1002/marc.200400647.
[166]  Chang, J.F.; Sun, B.Q. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 2004, 16, 4772–4776, doi:10.1021/cm049617w.
[167]  Wang, S.H.; Kappl, M. Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 2012, 24, 417–420, doi:10.1002/adma.201103057.
[168]  Dong, H.L.; Jiang, S.D. Nanowire crystals of a rigid rod conjugated polymer. J. Am. Chem. Soc. 2009, 131, 17315–17320, doi:10.1021/ja907015p.
[169]  Liu, C.F.; Wang, Q.L. Morphology and structure of the β phase crystals of monodisperse polyfluorenes. Macromolecules 2013, 46, 3025–3030, doi:10.1021/ma400010f.
[170]  Liu, Y.; Dong, H.L. High performance nanocrystals of a donor-acceptor conjugated polymer. Chem. Mater. 2013, 25, 2649–2655, doi:10.1021/cm4011579.
[171]  Jo, J.; Kim, S.S. Time-dependent morphology evolution by annealing processes on polymer: Fullerene blend solar cells. Adv. Funct. Mater. 2009, 19, 866–874, doi:10.1002/adfm.200800968.
[172]  Vogelsang, J.; Lupton, J.M. Solvent vapor annealing of single conjugated polymer chains: Building organic optoelectronic materials from the bottom up. J. Phys. Chem. Lett. 2012, 3, 1503–1513, doi:10.1021/jz300294m.
[173]  Liu, Y.; Shi, Q.Q. Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance. Org. Electron. 2012, 13, 2372–2378, doi:10.1016/j.orgel.2012.07.025.
[174]  Liu, J.G.; Chen, L. Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. J. Mater. Chem. A 2013, 1, 6216–6225, doi:10.1039/c3ta10629b.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133