In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall.
References
[1]
Palanivelu, R.; Preuss, D. Pollen tube targeting and axon guidance: Parallels in tip growth mechanisms. Trends Cell Biol. 2000, 10, 517–524, doi:10.1016/S0962-8924(00)01849-3.
[2]
Kroeger, J.H.; Zerzour, R.; Geitmann, A. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 2011, 6, e18549, doi:10.1371/journal.pone.0018549.
[3]
Parre, E.; Geitmann, A. More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol. 2005, 137, 274–286, doi:10.1104/pp.104.050773.
[4]
Aouar, L.; Chebli, Y.; Geitmann, A. Morphogenesis of complex plant cell shapes: The mechanical role of crystalline cellulose in growing pollen tubes. Sex. Plant Reprod. 2010, 23, 15–27, doi:10.1007/s00497-009-0110-7.
[5]
Cai, G.; Faleri, C.; Del Casino, C.; Emons, A.M.C.; Cresti, M. Distribution of callose synthase, cellulose synthase and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol. 2011, 155, 1169–1190, doi:10.1104/pp.110.171371.
[6]
Cheung, A.Y.; Wu, H.M. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Ann. Rev. Plant Biol. 2008, 59, 547–572, doi:10.1146/annurev.arplant.59.032607.092921.
Beninati, S.; Bergamini, C.M.; Piacentini, M. An overview of the first 50 years of transglutaminase research. Amino Acids 2009, 36, 591–598, doi:10.1007/s00726-008-0211-x.
Icekson, I.; Apelbaum, A. Evidence for transglutaminase activity in plant tissue. Plant Physiol. 1987, 84, 972–974, doi:10.1104/pp.84.4.972.
[11]
Serafini-Fracassini, D.; Del Duca, S.; D’Orazi, D. First evidence for polyamine conjugation mediated by an enzymic activity in plants. Plant Physiol. 1988, 87, 757–761, doi:10.1104/pp.87.3.757.
[12]
Griffin, M.; Casadio, R.; Bergamini, C.M. Transglutaminases: Nature’s biological glues. Biochem. J. 2002, 368, 377–396, doi:10.1042/BJ20021234.
[13]
Coussons, P.J.; Price, N.C.; Kelly, S.M.; Smith, B.; Sawyer, L. Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem. J. 1992, 282, 929930.
[14]
Folk, J.E.; Park, M.H.; Chung, S.I.; Schrode, J.; Lester, E.P.; Cooper, H.L. Polyamines as physiological substrates for transglutaminases. J. Biol. Chem. 1980, 255, 3695–3700.
Della Mea, M.; Caparros-Ruiz, D.; Claparols, I.; Serafini-Fracassini, D.; Rigau, J. AtPng1p. The first plant transglutaminase. Plant Physiol. 2004, 135, 2046–2054, doi:10.1104/pp.104.042549.
[17]
Nicholas, B.; Smethurst, P.; Verderio, E.; Jones, R.; Griffin, M. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death: A mechanism for maintaining tissue integrity. Biochem. J. 2003, 371, 413–422, doi:10.1042/BJ20021949.
[18]
Mukherjee, B.B.; Nemir, M.; Beninati, S.; Cordella-Miele, E.; Singh, K.; Chackalaparampil, I.; Shanmugam, V.; DeVouge, M.W.; Mukherjee, A.B. Interaction of osteopontin with fibronectin and other extracellular matrix molecules. Ann. NY Acad. Sci. 1995, 760, 201–212, doi:10.1111/j.1749-6632.1995.tb44631.x.
[19]
Lentini, A.; Abbruzzese, A.; Caraglia, M.; Marra, M.; Beninati, S. Protein-polyamine conjugation by transglutaminase in cancer cell differentiation: Review article. Amino Acids 2004, 26, 331–337.
[20]
Bagni, N.; Tassoni, A. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 2001, 20, 301–317, doi:10.1007/s007260170046.
[21]
Special Issue: Polyamines—Dedicated to the memory of Nello Bagni. Plant Physiol. Biochem. 2010, 48, 487–634.
[22]
Bertossi, F.; Bagni, N.; Moruzzi, G.; Caldarera, C.M. Spermine as a new growth-promoting substance for Helianthus tuberosus (Jerusalem Artichoke) in vitro. Experientia 1965, 21, 80–81, doi:10.1007/BF02144752.
[23]
Tasco, G.; Della Mea, M.; Serafini-Fracassini, D.; Casadio, R. Building a low resolution model of a transglutaminase domain of an hypothetical N-glycanase from Arabidopsis thaliana. Amino Acids 2003, 25, 197.
[24]
Masahara-Negishi, Y.; Hosomi, A.; Della Mea, M.; Serafini-Fracassini, D.; Suzuki, T. A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast. Biochim. Biophys. Acta 2012, 1820, 1457–1462, doi:10.1016/j.bbagen.2012.05.009.
[25]
Beninati, S.; Iorio, R.A.; Tasco, G.; Serafini-Fracassini, D.; Casadio, R.; Del Duca, S. Expression of different forms of transglutaminases by immature cells of Helianthus tuberosus sprout apices. Amino Acids 2012, 44, 271–283.
[26]
Serafini-Fracassini, D.; Del Duca, S. Transglutaminases: Widespread cross-linking enzymes in plants. Ann. Bot. 2008, 102, 145–152, doi:10.1093/aob/mcn075.
[27]
Villalobos, E.; Santos, M.; Talavera, D.; Rodriguez-Falcon, M.; Torne, J.M. Molecular cloning and characterization of a maize transglutaminase complementary DNA. Gene 2004, 336, 93–104, doi:10.1016/j.gene.2004.03.025.
[28]
Del Duca, S.; Tidu, V.; Bassi, R.; Esposito, C.; Serafini-Fracassini, D. Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus L. Planta 1994, 193, 283–289.
[29]
Della Mea, M.; de Filippis, F.; Genovesi, V.; Serafini Fracassini, D.; Del Duca, S. The acropetal wave of developmental cell death of tobacco corolla is preceded by activation of transglutaminase in different cell compartments. Plant Physiol. 2007, 144, 1211–1222, doi:10.1104/pp.106.092072.
[30]
Del Duca, S.; Serafini-Fracassini, D. Transglutaminases of higher, lower plants and fungi. Prog. Exp. Tumor Res. 2005, 38, 223–247, doi:10.1159/000084243.
[31]
Serafini-Fracassini, D.; Della Mea, M.; Tasco, G.; Casadio, R.; Del Duca, S. Plant and animal transglutaminases: Do similar functions imply similar structures? Amino Acids 2009, 36, 643657.
[32]
Della Mea, M.; di Sandro, A.; Dondini, L.; Del Duca, S.; Vantini, F.; Bergamini, C.; Bassi, R.; SerafiniFracassini, D. A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a light-dependent way. Planta 2004, 219, 754–764.
[33]
Del Duca, S.; Faleri, C.; Iorio, R.A.; Cresti, M.; Serafini-Fracassini, D.; Cai, G. Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. Plant Physiol. 2013, doi:10.1104/pp.112.212225.
[34]
Di Sandro, A.; Serafini-Fracassini, D.; Del Duca, S.; Della Mea, M.; de Franceschi, P.; Dondini, L.; Faleri, C.; Cai, G.; Sansavini, S. Pollen transglutaminase in pear self incompatibility and relationship with S-RNases and S-allele variability. Acta Hort. 2008, 800, 423–429.
[35]
Di Sandro, A.; Del Duca, S.; Verderio, E.; Hargreaves, A.J.; Scarpellini, A.; Cai, G.; Cresti, M.; Faleri, C.; Iorio, R.A.; Shigehisa, H.; et al. An extracellular transglutaminase is required for apple pollen tube growth. Biochem. J. 2010, 429, 261–271, doi:10.1042/BJ20100291.
[36]
Gentile, A.; Antognoni, F.; Iorio, R.A.; Distefano, G.; Las, C.G.; La, M.S.; Serafini-Fracassini, D.; Del Duca, S. Polyamines and transglutaminase activity are involved in compatible and selfincompatible pollination of Citrus grandis. Amino Acids 2012, 42, 1025–1035, doi:10.1007/s00726-011-1017-9.
[37]
Iorio, R.A.; di Sandro, A.; Paris, R.; Pagliarani, G.; Tartarini, S.; Ricci, G.; Serafini-Fracassini, D.; Verderio, E.; Del Duca, S. Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential. Amino Acids 2012, 42, 1007–1024, doi:10.1007/s00726-011-1043-7.
[38]
Hegyi, G.; Michel, H.; Shabanowitz, J.; Hunt, D.F.; Chatterjie, N.; Healy-Louie, G.; Elzinga, M. Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by N-(4-azidobenzoyl)-putrescine. Protein Sci. 1992, 1, 132–144.
[39]
Nemes, Z., Jr.; Adany, R.; Balazs, M.; Boross, P.; Fesus, L. Identification of cytoplasmic actin as an abundant glutaminyl substrate for tissue transglutaminase in HL-60 and U937 cells undergoing apoptosis. J. Biol. Chem. 1997, 272, 20577–20583.
[40]
Eligula, L.; Chuang, L.; Phillips, M.L.; Motoki, M.; Seguro, K.; Muhlrad, A. Transglutaminase-induced cross-linking between subdomain 2 of G-actin and the 636–642 lysine-rich loop of myosin subfragment 1. Biophys. J. 1998, 74, 953–963, doi:10.1016/S0006-3495(98)74018-4.
[41]
Chowdhury, Z.A.; Barsigian, C.; Chalupowicz, G.D.; Bach, T.L.; Garcia-Manero, G.; Martinez, J. Colocalization of tissue transglutaminase and stress fibers in human vascular smooth muscle cells and human umbilical vein endothelial cells. Exp. Cell Res. 1997, 231, 38–49, doi:10.1006/excr.1996.3448.
[42]
Miller, C.C.; Anderton, B.H. Transglutaminase and the neuronal cytoskeleton in Alzheimer’s disease. J. Neurochem. 1986, 46, 1912–1922, doi:10.1111/j.1471-4159.1986.tb08513.x.
[43]
Esposito, C.; Mariniello, L.; Cozzolino, A.; Amoresano, A.; Orru, S.; Porta, R. Rat coagulating gland secretion contains a kinesin heavy chain-like protein acting as a type IV transglutaminase substrate. Biochemistry 2001, 40, 4966–4971, doi:10.1021/bi001542w.
[44]
Cai, G.; Cresti, M. Organelle motility in the pollen tube: A tale of 20 years. J. Exp. Bot. 2009, 60, 495–508, doi:10.1093/jxb/ern321.
[45]
Daher, F.B.; Geitmann, A. Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 2011, 12, 1537–1551, doi:10.1111/j.1600-0854.2011.01256.x.
[46]
Cardenas, L.; Lovy-Wheeler, A.; Wilsen, K.L.; Hepler, P.K. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil. Cytoskeleton 2005, 61, 112–127, doi:10.1002/cm.20068.
[47]
Staiger, C.J.; Poulter, N.S.; Henty, J.L.; Franklin-Tong, V.E.; Blanchoin, L. Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot. 2010, 61, 1969–1986, doi:10.1093/jxb/erq012.
[48]
Kost, B. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol. 2008, 18, 119–127, doi:10.1016/j.tcb.2008.01.003.
[49]
Cardenas, L.; Lovy-Wheeler, A.; Kunkel, J.G.; Hepler, P.K. Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol. 2008, 146, 1611–1621, doi:10.1104/pp.107.113035.
[50]
Del Casino, C.; Li, Y.; Moscatelli, A.; Scali, M.; Tiezzi, A.; Cresti, M. Distribution of microtubules during the growth of tobacco pollen tubes. Biol. Cell 1993, 79, 125–132.
[51]
Cheung, A.Y.; Duan, Q.H.; Costa, S.S.; de Graaf, B.H.J.; di Stilio, V.S.; Feijo, J.; Wu, H.M. The dynamic pollen tube cytoskeleton: Live cell studies using actin-binding and microtubule-binding reporter proteins. Mol. Plant 2008, 1, 686–702, doi:10.1093/mp/ssn026.
[52]
Laitiainen, E.; Nieminen, K.M.; Vihinen, H.; Raudaskoski, M. Movement of generative cell and vegetative nucleus in tobacco pollen tubes is dependent on microtubule cytoskeleton but independent of the synthesis of callose plugs. Sex. Plant Reprod. 2002, 15, 195–204, doi:10.1007/s00497-002-0155-3.
[53]
Astrom, H.; Sorri, O.; Raudaskoski, M. Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex. Plant Reprod. 1995, 8, 61–69.
[54]
Del Duca, S.; Bregoli, A.M.; Bergamini, C.; Serafini-Fracassini, D. Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sex. Plant Reprod. 1997, 10, 89–95, doi:10.1007/s004970050072.
[55]
Del Duca, S.; Serafini-Fracassini, D.; Bonner, P.L.; Cresti, M.; Cai, G. Effects of post-translational modifications catalyzed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem. J. 2009, 418, 651–664, doi:10.1042/BJ20081781.
[56]
Xue, X.; Du, F.; Zhu, J.; Ren, H. Actin organization and regulation during pollen tube growth. Front. Biol. 2011, 6, 40–51, doi:10.1007/s11515-011-1110-1.
Cai, G.; Cresti, M. Microtubule motors and pollen tube growth—Still an open question. Protoplasma 2010, 247, 131–143.
[59]
Bosch, M.; Franklin-Tong, V.E. Self-incompatibility in Papaver: Signalling to trigger PCD in incompatible pollen. J. Exp. Bot. 2008, 59, 481–490.
[60]
Poulter, N.S.; Vatovec, S.; Franklin-Tong, V.E. Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol. 2008, 146, 1358–1367.
[61]
McClure, B.; Cruz-Garcia, F.; Romero, C. Compatibility and incompatibility in S-RNase-based systems. Ann. Bot. 2011, 108, 647–658.
[62]
Cruz-Garcia, F.; Nathan, H.C.; Kim, D.; McClure, B. Stylar glycoproteins bind to S-RNase in vitro. Plant J. 2005, 42, 295–304.
[63]
Liu, Z.Q.; Xu, G.H.; Zhang, S.L. Pyrus pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen and tubes in vitro. Protoplasma 2007, 232, 61–67.
[64]
Cai, G.; Della Mea, M.; Faleri, C.; Serafini-Fracassini, D.; Del Duca, S. Spermine regulates the development and programmed cell death of Nicotiana tabacum corolla. University of Bologna: Bologna, Italy, 2013.
[65]
Del Duca, S.; Cai, G.; di Sandro, A.; Serafini-Fracassini, D. Compatible and self-incompatible pollination in Pyrus communis displays different polyamine levels and transglutaminase activity. Amino Acids 2010, 38, 659–667.
[66]
Dhonukshe, P.; Laxalt, A.M.; Goedhart, J.; Gadella, T.W.J.; Munnik, T. Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 2003, 15, 2666–2679.
[67]
Gardiner, J.; Andreeva, Z.; Barton, D.; Ritchie, A.; Overall, R.; Marc, J. The phospholipase A inhibitor, aristolochic acid, disrupts cortical microtubule arrays and root growth in Arabidopsis. Plant Biol. 2008, 10, 725–731.
[68]
Kim, H.J.; Ok, S.H.; Bahn, S.C.; Jang, J.; Oh, S.A.; Park, S.K.; Twell, D.; Ryu, S.B.; Shin, J.S. Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell 2011, 23, 94–110.
[69]
Zemskov, E.A.; Mikhailenko, I.; Hsia, R.C.; Zaritskaya, L.; Belkin, A.M. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 2011, 6, e19414.
[70]
Parton, R.M.; Fischer-Parton, S.; Watahiki, M.K.; Trewavas, A.J. Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J. Cell Sci. 2001, 114, 2685–2695.
[71]
Certal, A.C.; Almeida, R.B.; Carvalho, L.M.; Wong, E.; Moreno, N.; Michard, E.; Carneiro, J.; RodriguezLeon, J.; Wu, H.M.; Cheung, A.Y.; et al. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 2008, 20, 614–634.
Toyooka, K.; Goto, Y.; Asatsuma, S.; Koizumi, M.; Mitsui, T.; Matsuoka, K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 2009, 21, 1212–1229.
[74]
Nakaoka, H.; Perez, D.M.; Baek, K.J.; Das, T.; Husain, A.; Misono, K.; Im, M.J.; Graham, R.M. Gh: A GTPbinding protein with transglutaminase activity and receptor signaling function. Science 1994, 264, 1593–1596.
[75]
Antonyak, M.A.; McNeill, C.J.; Wakshlag, J.J.; Boehm, J.E.; Cerione, R.A. Activation of the Ras-ERK pathway inhibits retinoic acid-induced stimulation of tissue transglutaminase expression in NIH3T3 cells. J. Biol. Chem. 2003, 278, 15859–15866.
[76]
Baek, K.J.; Kang, S.; Damron, D.; Im, M. Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J. Biol. Chem. 2001, 276, 5591–5597.
[77]
Dowd, P.E.; Coursol, S.; Skirpan, A.L.; Kao, T.H.; Gilroy, S. Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 2006, 18, 1438–1453.
[78]
Helling, D.; Possart, A.; Cottier, S.; Klahre, U.; Kost, B. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 2006, 18, 3519–3534.
[79]
Dinnella, C.; Serafini-Fracassini, D.; Grandi, B.; Del Duca, S. The cell cycle in Helianthus tuberosus: Analysis of polyamine-endogenous protein conjugates by transglutaminase-like activity. Plant Physiol. Biochem. 1992, 30, 531–539.
[80]
Waffenschmidt, S.; Kusch, T.; Woessner, J.P. A transglutaminase immunologically related to tissue transglutaminase catalyzes cross-linking of cell wall proteins in Chlamydomonas reinhardtii. Plant Physiol. 1999, 121, 1003–1015.
[81]
Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J.J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nurnberger, T. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J. 2002, 21, 6681–6688.
[82]
Iorio, R.A.; di Sandro, A.; Scarpellini, A.; Del Duca, S.; Serafini-Fracassini, D.; Verderio, E. Visualisation of transglutaminase-mediated cross-linking activity in germinating pollen by laser confocal microscopy. Plant Biosyst. 2008, 142, 360–365.
[83]
Furutani, Y.; Kato, A.; Notoya, M.; Ghoneim, M.A.; Hirose, S. A simple assay and histochemical localization of transglutaminase activity using a derivative of green fluorescent protein as substrate. J. Histochem. Cytochem. 2001, 49, 247–258.
[84]
Verderio, E.; Nicholas, B.; Gross, S.; Griffin, M. Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: Effects on the processing of fibronectin, cell attachment, and cell death. Exp. Cell Res. 1998, 239, 119–138.
[85]
Chae, K.; Lord, E.M. Pollen tube growth and guidance: Roles of small, secreted proteins. Ann. Bot. 2011, 108, 627–636.
[86]
Sun, Y.; Qian, H.; Xu, X.-D.; Han, Y.; Yen, L.-F.; Sun, D.-Y. Integrin-like proteins in the pollen tube: Detection, localization and function. Plant Cell Physiol. 2000, 41, 1136–1142.
[87]
D’Orazi, D.; Bagni, N. In vitro interactions between polyamines and pectic substances. Biochem. Biophys. Res. Commun. 1987, 148, 1259–1263.
[88]
Zonia, L.; Munnik, T. Understanding pollen tube growth: The hydrodynamic model versus the cell wall model. Trends Plant Sci. 2011, 16, 347–352.
[89]
Majewska-Sawka, A.; Nothnagel, E.A. The multiple roles of arabinogalactan proteins in plant development. Plant Physiol. 2000, 122, 3–10.
[90]
Lee, C.B.; Swatek, K.N.; McClure, B. Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins. J. Biol. Chem. 2008, 283, 26965–26973.
[91]
Mollet, J.C.; Kim, S.; Jauh, G.Y.; Lord, E.M. Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside. Protoplasma 2002, 219, 89–98.