全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Pollen Performance in Clarkia Taxa with Contrasting Mating Systems: Implications for Male Gametophytic Evolution in Selfers and Outcrossers

DOI: 10.3390/plants2020248

Keywords: Clarkia exilis, Clarkia unguiculata, Clarkia xantiana ssp. parviflora, Clarkia xantiana ssp. xantiana, sexual selection, mating system evolution, pollen performance, pollen tube growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

We tested three predictions regarding the joint evolution of pollen performance and mating system. First, due to the potential for intense intrasexual competition in outcrossing populations, we predicted that outcrossers would produce faster-growing pollen than their selfing relatives. Second, if elevated competition promotes stronger selection on traits that improve pollen performance, then, among-plant variation in pollen performance would be lower in outcrossers than in selfers. Third, given successive generations of adaptation to the same maternal genotype in selfers, we predicted that, in selfing populations (but not in outcrossing ones), pollen would perform better following self- than cross-pollinations. We tested these predictions in field populations of two pairs of Clarkia (Onagraceae) sister taxa. Consistent with our predictions, one outcrosser ( C. unguiculata) exhibited faster pollen germination and less variation in pollen tube growth rate (PTGR) among pollen donors than its selfing sister species, C. exilis. Contrary to our predictions, the selfing C. xantiana ssp. parviflora exhibited faster PTGR than the outcrossing ssp. xantiana, and these taxa showed similar levels of variation in this trait. Pollen performance following self- vs. cross-pollinations did not differ within either selfing or outcrossing taxa. While these findings suggest that mating system and pollen performance may jointly evolve in Clarkia, other factors clearly contribute to pollen performance in natural populations.

References

[1]  Barrett, S.C.H. The evolution of plant sexual diversity. Nat. Rev. Genet. 2002, 3, 274–284, doi:10.1038/nrg776.
[2]  Stebbins, G.L. Adaptive radiation of reproductive characteristics in angiosperms: Pollination mechanisms. Annu. Rev. Ecol. Syst. 1970, 1, 307–326, doi:10.1146/annurev.es.01.110170.001515.
[3]  Barrett, S.C.H.; Eckert, C.G. Variation and evolution of mating systems in seed plants. In Biological Approaches and Evolutionary Trends in Plants; Kawano, S., Ed.; Academic Press: New York, NY, USA, 1990; pp. 229–254.
[4]  Darwin, C.D. Effects of Cross and Self Fertilisation in the Vegetable Kingdom; John Murray: London, UK, 1876.
[5]  Wyatt, R. The Evolution of self-pollination in granite outcrop species of Arenaria (Caryophyllaceae). 1. morphological correlates. Evolution 1984, 38, 804–816, doi:10.2307/2408392.
[6]  Goodwillie, C.; Sargent, R.D.; Eckert, C.G.; Elle, E.; Geber, M.A.; Johnston, M.O.; Kalisz, S.; Moeller, D.A.; Ree, R.H.; Vallejo-Marin, M.; et al. Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol. 2010, 185, 311–321, doi:10.1111/j.1469-8137.2009.03043.x.
[7]  Armbruster, W.S.; Mulder, C.P.H.; Baldwin, B.G.; Kalisz, S.; Wessa, B.; Nute, H. Comparative analysis of late floral development and mating-system evolution in Tribe Collinsieae (Scrophulariaceae s.l.). Am. J. Bot. 2002, 89, 37–49, doi:10.3732/ajb.89.1.37.
[8]  French, G.C.; Ennos, R.A.; Silverside, A.J.; Hollingsworth, P.M. The relationship between flower size, inbreeding coefficient and inferred selfing rate in British Euphrasia species. Heredity 2005, 94, 44–51, doi:10.1038/sj.hdy.6800553.
[9]  Runions, C.J.; Geber, M.A. Evolution of the self-pollinating flower in Clarkia xantiana (Onagraceae). I. Size and development of floral organs. Am. J. Bot. 2000, 87, 1439–1451, doi:10.2307/2656870.
[10]  Dudley, L.S.; Mazer, S.J.; Galusky, P. The joint evolution of mating system, floral traits and life history in Clarkia (Onagraceae): Genetic constraints vs. independent evolution. J. Evol. Biol. 2007, 20, 2200–2218, doi:10.1111/j.1420-9101.2007.01421.x.
[11]  Delesalle, V.A.; Mazer, S.J. Size-dependent pollen:ovule ratios and the allometry of floral sex allocation in Clarkia (Onagraceae) taxa with contrasting mating systems. Am. J. Bot. 2009, 96, 968–978, doi:10.3732/ajb.0800039.
[12]  Delesalle, V.A.; Mazer, S.J.; Paz, H. Temporal variation in the pollen:ovule ratios of Clarkia (Onagraceae) taxa with contrasting mating systems: Field populations. J. Evol. Biol. 2008, 21, 310–323.
[13]  Cruden, R.W. Pollen-ovule ratios—Conservative indicator of breeding systems in flowering plants. Evolution 1977, 31, 32–46, doi:10.2307/2407542.
[14]  Jurgens, A.; Witt, T.; Gottsberger, G. Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: Correlation with breeding system, pollination, life form, style number, and sexual system. Sex. Plant Reprod. 2002, 14, 279–289, doi:10.1007/s00497-001-0124-2.
[15]  Kerwin, M.A.; Smith-Huerta, N.Y. Pollen and pistil effects on pollen germination and tube growth in selfing and outcrossing populations of Clarkia tembloriensis (Onagraceae) and their hybrids. Int. J. Plant Sci. 2000, 161, 895–902, doi:10.1086/317564.
[16]  Smith-Huerta, N.L. Pollen tube attrition in Clarkia tembloriensis (Onagraceae). Int. J. Plant Sci. 1997, 158, 519–524.
[17]  Smith-Huerta, N.Y. Pollen germination and tube growth in selfing and outcrossing pouplations of Clarkia tembloriensis (Onagraceae). Int. J. Plant Sci. 1996, 157, 228–233.
[18]  Taylor, M.L.; Williams, J.H. Pollen tube development in two species of Trithuria (Hydratellaceae) with contrasting breeding systems. Sex. Plant Reprod. 2012, 25, 83–96, doi:10.1007/s00497-012-0183-6.
[19]  Mazer, S.J.; Hove, A.A.; Miller, B.S.; Barbet-Massin, M. The joint evolution of mating system and pollen performance: Predictions regarding male gametophytic evolution in selfers versus outcrossers. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 31–41, doi:10.1016/j.ppees.2009.06.005.
[20]  Lankinen, A.; Maad, J.; Armbruster, W.S. Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): One-donor crosses reveal heritability but no effect on sporophytic-offspring fitness. Ann. Bot. 2009, 103, 941–950, doi:10.1093/aob/mcp014.
[21]  Schlichting, C.D.; Stephenson, A.G.; Small, L.E. Pollen loads and progeny vigor in Cucurbita pepo—The next generation. Evolution 1990, 44, 1358–1372, doi:10.2307/2409295.
[22]  Lankinen, A. Effects of soil pH and phosphorus on in vitro pollen competitive ability and sporophytic traits in clones of Viola tricolor. Int. J. Plant Sci. 2000, 161, 885–893, doi:10.1086/317561.
[23]  Jolivet, C.; Bernasconi, G. Within/between population crosses reveal genetic basis for siring success in Silene latifolia (Caryophyllaceae). J. Evol. Biol. 2007, 20, 1361–1374, doi:10.1111/j.1420-9101.2007.01344.x.
[24]  Cruzan, M.B. Pollen tube distributions in Nicotiana glauca—Evidence for density dependent growth. Am. J. Bot. 1986, 73, 902–907, doi:10.2307/2444302.
[25]  Erbar, C. Pollen tube transmitting tissue: Place of competition of male gametophytes. Int. J. Plant Sci. 2003, 164, S265–S277, doi:10.1086/377061.
[26]  Lloyd, D.G.; Yates, J.M.A. Intra-Sexual Selection and the Segregation of Pollen and Stigmas in Hermaphrodite Plants, Exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution 1982, 36, 903–913, doi:10.2307/2408071.
[27]  Skogsmyr, I.; Lankinen, A. Sexual selection: An evolutionary force in plants. Biol. Rev. 2002, 77, 537–562, doi:10.1017/S1464793102005973.
[28]  Willson, M.F.; Burley, N. Mate Choices in Plants: Tactics, Mechanisms, and Consequences; Princeton University Press: Princeton, NJ, USA, 1983.
[29]  Winsor, J.A.; Peretz, S.; Stephenson, A.G. Pollen competition in a natural population of Cucurbita foetidissima (Cucurbitaceae). Am. J. Bot. 2000, 87, 527–532, doi:10.2307/2656596.
[30]  Herrera, C.M. Censusing natural microgametophyte populations: Variable spatial mosaics and extreme fine-graininess in winter-flowering Helleborus foetidus (Ranunculaceae). Am. J. Bot. 2002, 89, 1570–1578, doi:10.3732/ajb.89.10.1570.
[31]  Herrera, C.M. Distribution ecology of pollen tubes: Fine-grained, labile spatial mosaics in southern Spanish Lamiaceae. New Phytol. 2004, 161, 473–484, doi:10.1111/j.1469-8137.2004.00978.x.
[32]  Cruzan, M.B. Variation in pollen size, fertilization ability, and post-pollination siring ability in Erythronium grandiflorum. Evolution 1990, 44, 843–856, doi:10.2307/2409550.
[33]  Pasonen, H.L.; Pulkkinen, P.; Kapyla, M.; Blom, A. Pollen-tube growth rate and seed-siring success among Betula pendula clones. New Phytol. 1999, 143, 243–251, doi:10.1046/j.1469-8137.1999.00451.x.
[34]  Snow, A.A.; Spira, T.P. Differential pollen tube growth rates and nonrandom fertilization in Hibiscus moscheutos (Malvaceae). Am. J. Bot. 1991, 78, 1419–1426, doi:10.2307/2445280.
[35]  Lankinen, A.; Skogsmyr, I. Pollen competitive ability: The effect of proportion in two-donor crosses. Evol. Ecol. Res. 2002, 4, 687–700.
[36]  Honys, D.; Twell, D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003, 132, 640–652, doi:10.1104/pp.103.020925.
[37]  Mulcahy, D.L. Correlation between gametophytic and sporophytic characteristics in Zea mays L. Science 1971, 171, 1155–1156.
[38]  Pedersen, S.; Simonsen, V.; Loeschcke, V. Overlap of gametophytic and sporophytic gene expression in barley. Theor. Appl. Genet. 1987, 75, 200–206.
[39]  Ashman, T.L.; Knight, T.M.; Steets, J.A.; Amarasekare, P.; Burd, M.; Campbell, D.R.; Dudash, M.R.; Johnston, M.O.; Mazer, S.J.; Mitchell, R.J.; et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 2004, 85, 2408–2421, doi:10.1890/03-8024.
[40]  Burd, M. Bateman’s principle and plant reproduction—The role of pollen limitation in fruit and seed set. Bot. Rev. 1994, 60, 83–139, doi:10.1007/BF02856594.
[41]  Stephenson, A.G. Flower and fruit abortion—Proximate causes and ultimate functions. Annu. Rev. Ecol. Syst. 1981, 12, 253–279.
[42]  Lay, C.R.; Linhart, Y.B.; Diggle, P.K. The good, the bad and the flexible: Plant interactions with pollinators and herbivores over space and time are moderated by plant compensatory responses. Ann. Bot. 2011, 108, 749–763, doi:10.1093/aob/mcr152.
[43]  Forrest, J.; Thomson, J.D. Pollen limitation and cleistogamy in subalpine Viola praemorsa. Botany 2008, 86, 511–519, doi:10.1139/B08-020.
[44]  Hegland, S.J.; Totland, O. Is the magnitude of pollen limitation in a plant community affected by pollinator visitation and plant species specialisation levels? Oikos 2008, 117, 883–891, doi:10.1111/j.0030-1299.2008.16561.x.
[45]  Brunet, J. Male reproductive success and variation in fruit and seed set in Aquilegia caerulea (Ranunculaceae). Ecology 1996, 77, 2458–2471, doi:10.2307/2265746.
[46]  Nemeth, M.B.; Smith-Huerta, N.L. Pollen deposition, pollen tube growth, seed production, and seedling performance in natural populations of Clarkia unguiculata (Onagraceae). Int. J. Plant Sci. 2003, 164, 153–164, doi:10.1086/344549.
[47]  Davis, S.L. Natural levels of pollination intensity and effects of pollen loads on offspring quality in females of Thalictrum pubescens (Ranunculaceae). Plant Syst. Evol. 2004, 244, 45–54, doi:10.1007/s00606-003-0034-x.
[48]  Snow, A.A. Pollination dynamics in Epilobium canum (Onagraceae)—Consequences for gametophytic selection. Am. J. Bot. 1986, 73, 139–151, doi:10.2307/2444286.
[49]  Bernasconi, G. Seed paternity in flowering plants: An evolutionary perspective. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 149–158, doi:10.1078/1433-8319-00075.
[50]  Campbell, D.R. Multiple paternity in fruits of Ipomopsis aggregata (Polemoniaceae). Am. J. Bot. 1998, 85, 1022–1027, doi:10.2307/2446369.
[51]  Dudash, M.R.; Ritland, K. Multiple paternity and self-fertilization in relation to floral age in Mimulus guttatus (Scrophulariaceae). Am. J. Bot. 1991, 78, 1746–1753, doi:10.2307/2444854.
[52]  Ellstrand, N.C.; Marshall, D.L. Patterns of multiple paternity in populations of Raphanus sativus. Evolution 1986, 40, 837–842, doi:10.2307/2408468.
[53]  Mitchell, R.J.; Karron, J.D.; Holmquist, K.G.; Bell, J.M. Patterns of multiple paternity in fruits of Mimulus ringens (Phrymaceae). Am. J. Bot. 2005, 92, 885–890, doi:10.3732/ajb.92.5.885.
[54]  Sampson, J.F. Multiple paternity in Eucalyptus rameliana (Myrtaceae). Heredity 1998, 81, 349–355, doi:10.1046/j.1365-2540.1998.00404.x.
[55]  Teixeira, S.; Bernasconi, G. High prevalence of multiple paternity within fruits in natural populations of Silene latifolia, as revealed by microsatellite DNA analysis. Mol. Ecol. 2007, 16, 4370–4379, doi:10.1111/j.1365-294X.2007.03493.x.
[56]  Vasek, F.C. The relationship of Clarkia exilis to Clarkia unguiculata. Am. J. Bot. 1958, 45, 150–162, doi:10.2307/2439364.
[57]  Delph, L.F.; Johannsson, M.H.; Stephenson, A.G. How environmental factors affect pollen performance: Ecological and evolutionary perspectives. Ecology 1997, 78, 1632–1639, doi:10.1890/0012-9658(1997)078[1632:HEFAPP]2.0.CO;2.
[58]  Hedhly, A.; Hormaza, J.I.; Herrera, M. Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). Am. J. Bot. 2004, 91, 558–564, doi:10.3732/ajb.91.4.558.
[59]  Hedhly, A.; Hormaza, J.I.; Herrero, M. Influence of genotype-temperature interaction on pollen performance. J. Evol. Biol. 2005, 18, 1494–1502, doi:10.1111/j.1420-9101.2005.00939.x.
[60]  Hedhly, A.; Hormaza, J.I.; Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009, 14, 30–36, doi:10.1016/j.tplants.2008.11.001.
[61]  Johannsson, M.H.; Stephenson, A.G. Effects of temperature during microsporogenesis on pollen performance in Cucurbita pepo L. (Cucurbitaceae). Int. J. Plant Sci. 1998, 159, 616–626.
[62]  Lankinen, A. In vitro pollen competitive ability in Viola tricolor: Temperature and pollen donor effects. Oecologia 2001, 128, 492–498, doi:10.1007/s004420100681.
[63]  Stephenson, A.G.; Travers, S.E.; Mena-Ali, J.I.; Winsor, J.A. Pollen performance before and during the autotrophic-heterotrophic transition of pollen tube growth. Philos. Trans. R. Soc. Lond. B 2003, 358, 1009–1017, doi:10.1098/rstb.2003.1290.
[64]  Herrero, M.; Hormaza, J.I. Pistil strategies controlling pollen tube growth. Sex. Plant Reprod. 1996, 9, 343–347, doi:10.1007/BF02441953.
[65]  Marshall, D.L.; Diggle, P.K. Mechanisms of differential pollen donor performance in wild radish, Raphanus sativus (Brassicaceae). Am. J. Bot. 2001, 88, 242–257, doi:10.2307/2657015.
[66]  Aizen, M.A.; Searcy, K.B.; Mulcahy, D.L. Among-flower and within-flower comparisons of pollen-tube growth following self-pollinations and cross-pollinations in Dianthus chinensis (Caryophyllaceae). Am. J. Bot. 1990, 77, 671–676, doi:10.2307/2444813.
[67]  Fenster, C.B.; Sork, V.L. Effect of crossing distance and male parent on in vivo pollen tube growth in Chamaecrista fasciculata. Am. J. Bot. 1988, 75, 1898–1903, doi:10.2307/2444744.
[68]  Snow, A.A.; Spira, T.P. Individual variation in the vigor of self pollen and selfed progeny in Hibiscus moscheutos (Malvaceae). Am. J. Bot. 1993, 80, 160–164, doi:10.2307/2445035.
[69]  Mazer, S.J.; Dudley, L.S.; Delesalle, V.A.; Paz, H.; Galusky, P. Stability of pollen-ovule ratios in pollinator-dependent versus autogamous Clarkia sister taxa: Testing evolutionary predictions. New Phytol. 2009, 183, 630–648, doi:10.1111/j.1469-8137.2009.02886.x.
[70]  Mazer, S.J.; Dudley, L.S.; Hove, A.A.; Emms, S.K.; Verhoeven, A.S. Physiological performance in Clarkia sister taxa with contrasting mating systems: Do early-flowering autogamous taxa avoid water stress relative to their pollinator-dependent counterparts? Int. J. Plant Sci. 2010, 171, 1029–1047, doi:10.1086/656305.
[71]  Eckhart, V.M.; Geber, M. Character variation and geographic distribution of Clarkia xantiana A. Gray (Onagraceae): Flowers and phenology distinguish the two subspecies. Madro?o 1999, 46, 117–125.
[72]  Eckhart, V.M.; Singh, I.; Louthan, A.M.; Keledjian, A.J.; Chu, A.; Moeller, D.A.; Geber, M.A. Plant-soil water relations and species border of Clarkia xantiana ssp. xantiana (Onagraceae). Int. J. Plant Sci. 2010, 171, 749–760.
[73]  Fausto, J.A.; Eckhart, V.M.; Geber, M.A. Reproductive assurance and the evolutionary ecology of self-pollination in Clarkia xantiana (Onagraceae). Am. J. Bot. 2001, 88, 1794–1800, doi:10.2307/3558355.
[74]  Moeller, D.A.; Geber, M.A. Ecological context of the evolution of self-pollination in Clarkia xantiana: Population size, plant communities, and reproductive assurance. Evolution 2005, 59, 786–799.
[75]  Gottlieb, L.D. Electrophoretic analysis of the phylogeny of the self-pollinating populations of Clarkia xantiana. Plant Syst. Evol. 1984, 147, 91–102, doi:10.1007/BF00984582.
[76]  Lewis, H.; Lewis, M.E. The Genus Clarkia; University of California Press: Los Angeles and Berkeley, CA, USA, 1955; Volume 20.
[77]  Moeller, D.A. Facilitative interactions among plants via shared pollinators. Ecology 2004, 85, 3289–3301, doi:10.1890/03-0810.
[78]  Moeller, D.A.; Geber, M.A.; Eckhart, V.M.; Tiffin, P. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant. Ecology 2012, 93, 1036–1048, doi:10.1890/11-1462.1.
[79]  Pettengill, J.B.; Moeller, D.A. Tempo and mode of mating system evolution between incipient Clarkia species. Evolution 2012, 66, 1210–1225, doi:10.1111/j.1558-5646.2011.01521.x.
[80]  Moore, D.M.; Lewis, H. The evolution of self-pollination in Clarkia xantiana. Evolution 1965, 19, 104–114, doi:10.2307/2406299.
[81]  Smith-Huerta, N.L.; Carrino-Kyker, S.R.; Huerta, A.J. The effects of maternal and paternal nutrient status on pollen performance in the wildflower Clarkia unguiculata Lindley (Onagraceae). J. Torrey Bot. Soc. 2007, 134, 451–457, doi:10.3159/07-RA-023.1.
[82]  Kokko, H.; Jennions, M.D.; Brooks, R. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Syst. 2006, 37, 43–66, doi:10.1146/annurev.ecolsys.37.091305.110259.
[83]  Vasek, F.C.; Sauer, R.H. Seasonal progression of flowering in Clarkia. Ecology 1971, 52, 1038–1045, doi:10.2307/1933810.
[84]  Dudley, L.S.; Hove, A.A.; Mazer, S.J. Physiological performance and mating system in Clarkia (Onagraceae): Does phenotypic selection predict divergence between sister species? Am. J. Bot. 2012, 99, 488–507, doi:10.3732/ajb.1100387.
[85]  Vasek, F.C. Outcrossing in natural populations 2. Clarkia unguiculata. Evolution 1965, 19, 152–156, doi:10.2307/2406369.
[86]  Vasek, F.C.; Harding, J. Outcrossing in natural populations 5. Analysis of outcrossing, inbreeding, and selection in Clarkia exilis and Clarkia tembloriensis. Evolution 1976, 30, 403–411, doi:10.2307/2407566.
[87]  Hickman, J.C.E. The Jepson Manual: Higher Plants of California; University of California Press: Berkeley and Los Angeles, CA, USA, 1993.
[88]  Martin, F.W. Staining and observing pollen tubes in the style by means of fluorescence. Biotech. Histochem. 1959, 34, 125–128, doi:10.3109/10520295909114663.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133