Brassinosteroids (BRs) are steroidal plant hormones with potent plant growth promoting activity. Because BR-deficient mutants of rice exhibit altered plant architecture and important agronomic traits, we conducted a systemic search for specific inhibitors of BR biosynthesis to manipulate the BR levels in plant tissues. Although previous studies have been conducted with BR biosynthesis inhibitors in dicots, little is known regarding the effects of BR biosynthesis inhibition in monocot plants. In this work, we used potent inhibitors of BR biosynthesis in Arabidopsis, and we performed a hydroponic culture of rice seedlings to evaluate the effects of BR biosynthesis inhibition. Among the test compounds, we found that 1-[[2-(4-Chlorophenyl)-4-(phenoxymethyl)-1,3-dioxolan-2-yl]methyl]-1 H-1,2,4-triazole ( 1) is a potent inhibitor that could induce phenotypes in rice seedlings that were similar to those observed in brassinosteroid deficient plants. The IC 50 value for the retardation of plant growth in rice seedlings was approximately 1.27 ± 0.43 μM. The IC 50 value for reducing the bending angle of the lamina joint was approximately 0.55 ± 0.15 μM.
Altmann, T. Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 1999, 208, 1–11, doi:10.1007/s004250050528.
[3]
Nakaya, M.; Tsukaya, H.; Murakami, N.; Kato, M. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 239–244, doi:10.1093/pcp/pcf024.
[4]
Choe, S.; Fujioka, S.; Noguchi, T.; Takatsuto, S.; Yoshida, S.; Feldmann, K.A. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 2001, 26, 573–582, doi:10.1046/j.1365-313x.2001.01055.x.
Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M.; Mizutani, M.; Sakata, K.; Takatsuto, S.; Yoshida, S.; et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in Rice. Nat. Biotechnol. 2006, 24, 105–109.
[7]
Sasse, J.M. Physiological actions of brassinosteroids: An update. J. Plant Growth Regul. 2003, 22, 276–288, doi:10.1007/s00344-003-0062-3.
[8]
Krishna, P. Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 2003, 22, 289–297, doi:10.1007/s00344-003-0058-z.
[9]
Wang, Z.Y.; Nakano, T.; Gendron, J.; He, J.; Chen, M.; Vafeados, D.; Yang, Y.; Fujioka, S.; Yoshida, S.; Asami, T.; et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2002, 2, 505–513, doi:10.1016/S1534-5807(02)00153-3.
[10]
Oh, K.; Yamada, K.; Asami, T.; Yoshizawa, Y. Synthesis of novel brassinosteroid biosynthesis inhibitors based on the ketoconazole scaffold. Bioorg. Med. Chem. Lett. 2012, 22, 1625–1628, doi:10.1016/j.bmcl.2011.12.120.
[11]
Yamada, K.; Yoshizawa, Y.; Oh, K. Synthesis of 2RS,4RS-1-[2-Phenyl-4-[2-(2-trifluromethoxy-phenoxy)-ethyl]-1,3-dioxolan-2-yl-methyl]-1H-1,2,4-triazole derivatives as potent inhibitors of brassinosteroid biosynthesis. Molecules 2012, 17, 4460–4473, doi:10.3390/molecules17044460.
[12]
Yamada, K.; Yajima, O.; Yoshizawa, Y.; Oh, K. Synthesis and biological evaluation of novel azole derivatives as selsective potent inhibitors of brassinosteroid biosynthesis. Bioorg. Med. Chem. 2013, 21, 2451–2461, doi:10.1016/j.bmc.2013.03.006.
[13]
Min, Y.K.; Asami, T.; Fujioka, S.; Murofushi, N.; Yamaguchi, I.; Yoshida, S. New lead compounds for brassinosteroid biosynthesis inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 425–430, doi:10.1016/S0960-894X(99)00008-6.
[14]
Sekimata, K.; Han, S.Y.; Yoneyama, K.; Takeuchi, Y.; Yoshida, S.; Asami, T. A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring. J. Agric. Food Chem. 2002, 50, 3486–3490, doi:10.1021/jf011716w.
[15]
Sekimata, K.; Kimura, K.; Kaneko, I.; Nakano, T.; Yoneyama, K.; Takeuchi, Y.; Yoshida, S.; Asami, T. A specific brassinosteroid biosynthesis inhibitor, Brz2001: Evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 2001, 213, 716–721, doi:10.1007/s004250100546.
[16]
Hoagland, D.R.; Arnon, D.I. The water-culture method of growing plants without soil. Calif. Agr. Expt. Sta. Circ. 1950, 347, 1–32.
[17]
Wada, K.; Marumo, S.; Ikekawa, N.; Morisaki, M.; Mori, K. Brassinolide and Homobrassinolide promotion of lamina inclination of rice seedling. Plant Cell Physiol. 1981, 22, 323–325.
[18]
Yamamuro, C.; Ihara, Y.; Wu, X.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Ashikari, M.; Kitano, H.; Matsuoka, M. Loss of function of a rice brassinosteroid insensitive 1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 2000, 12, 1591–1605.
[19]
Hong, Z.; Ueguchi-Tanaka, M.; Umemura, K.; Uozu, S.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Ashikari, M.; Kitano, H.; Matsuoka, M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 2003, 15, 2900–2910, doi:10.1105/tpc.014712.
[20]
Tanabe, S.; Ashikari, M.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Yano, M.; Yoshimura, A.; Kitano, H.; Matsuoka, M.; Fujisawa, Y.; et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 2005, 17, 776–790, doi:10.1105/tpc.104.024950.