In soybean, genic male sterility can be utilized as a tool to develop hybrid seed. Several male-sterile, female-fertile mutants have been identified in soybean. The male-sterile, female-fertile ms5 mutant was selected after fast neutron irradiation. Male-sterility due to ms5 was associated with the “stay-green” cotyledon color mutation . The cotyledon color trait in soybean is controlled by two loci, D1 and D2. Association between cotyledon color and male-sterility can be instrumental in early phenotypic selection of sterility for hybrid seed production. The use of such selection methods saves time, money, and space, as fewer seeds need to be planted and screened for sterility. The objectives of this study were to compare anther development between male-fertile and male-sterile plants, to investigate the possible linkages among the Ms5, D1 and D2 loci, and to determine if any of the d1 or d2 mutations can be applied in hybrid seed production. The cytological analysis during anther development displayed optically clear, disintegrating microspores and enlarged, engorged pollen in the male-sterile, female-fertile ms5ms5 plants, a common characteristic of male-sterile mutants. The D1 locus was mapped to molecular linkage group (MLG) D1a and was flanked by Satt408 and BARCSOYSSR_01_1622. The ms5 and D2 loci were mapped to MLG B1 with a genetic distance ~12.8 cM between them. These results suggest that use of the d2 mutant in the selection of male-sterile line may attenuate the cost hybrid seed production in soybean.
References
[1]
Kaul, M.L.H. Male Sterility in Higher Plants; Springer-Verlag: New York, NY, USA, 1988.
[2]
Palmer, R.G.; Pfeiffer, T.W.; Buss, G.R.; Kilen, T.C. Qualitative genetics. In Soybeans: Improvement, Production, and Uses, Agronomy Monograph 16, 3rd ed. ed.; American Society of Agrnomy, Inc.: Madison, WI, USA, 2004; pp. 137–233.
[3]
Bai, Y.N.; Gai, J.Y. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorability. Plant Breed. 2006, 125, 85–88, doi:10.1111/j.1439-0523.2006.01191.x.
[4]
Davis, W.H. Route to hybrid soybean production. US 4545146 A, 8 October 1985.
[5]
Ding, D.; Gai, J.; Cui, Z.; Qiu, J. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 2002, 124, 85–91, doi:10.1023/A:1015683526982.
[6]
Sun, H.; Zhao, L.; Huang, M. Cytoplasmic-Nuclear Male Sterile Soybean Line from Interspecific Crosses between G. max and G. soja. In Proceedings World Soybean Research Conference V: Soybean Feeds the World, Chiang Mai, Thailand, 1994; Chainuvat, C., Sarobol, N., Eds.; Kasetsart University Press: Chiang Mai, Thailand, 1997; pp. 99–102.
[7]
Zhao, T.J.; Gai, J.Y. Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3a in soybean. Euphytica 2006, 152, 387–396, doi:10.1007/s10681-006-9226-0.
[8]
Horner, H.T.; Palmer, R.G. Mechanisms of genic male sterility. Crop Sci. 1995, 35, 1527–1535, doi:10.2135/cropsci1995.0011183X003500060002x.
[9]
Rao, M.K.; Devi, K.U.; Arundhati, A. Applications of genic male sterility in plant breeding. Plant Breed. 1990, 105, 1–25, doi:10.1111/j.1439-0523.1990.tb00447.x.
Ortiz-Perez, E.; Wiley, H.; Horner, H.T.; Davis, W.H.; Palmer, R.G. Insect-mediated cross-pollination in soybean [Glycine max (L.) Merrill]: II. Phenotypic recurrent selection. Euphytica 2008, 162, 269–280.
[15]
Jin, W.; Palmer, R.G.; Horner, H.T.; Shoemaker, R.C. Molecular mapping of a male-sterile gene in soybean. Crop Sci. 1998, 38, 1681–1685, doi:10.2135/cropsci1998.0011183X003800060043x.
[16]
Cervantes-Martinez, I.; Xu, M.; Zhang, L.; Huang, Z.; Kato, K.K.; Horner, H.T.; Palmer, R.G. Molecular mapping of male-sterility loci ms2 and ms9 in soybean. Crop Sci. 2007, 47, 374–379, doi:10.2135/cropsci2006.03.0143.
[17]
Kato, K.K.; Palmer, R.G. Genetic identification of a female partial-sterile mutant in soybean. Genome 2003, 46, 128–134, doi:10.1139/g02-116.
[18]
Frasch, R.M.; Weigand, C.; Perez, P.T.; Palmer, R.G.; Sandhu, D. Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J. Hered. 2010, 102, 11–16.
[19]
Burton, J.W.; Brownie, C. Heterosis and inbreeding depression in two soybean single crosses. Crop Sci. 2006, 46, 2643–2648, doi:10.2135/cropsci2006.03.0156.
[20]
Perez, P.T.; Cianzio, S.R.; Ortiz-Perez, E.; Palmer, R.G. Agronomic performance of soybean hybrids from single, three-way, four-way, and five-way crosses, and backcross populations. J. Crop Improv. 2009, 23, 95–118, doi:10.1080/15427520802671677.
[21]
Perez, P.T.; Cianzio, S.R.; Palmer, R.G. Evaluation of soybean [Glycine max (L.) Merr.] F1 hybrids. J. Crop Improv. 2009, 23, 1–18.
[22]
Li, J.; Zhang, L.; Huang, Z.; Zhang, L.; Zhu, L. Yield heterosis and its utilization of F1 and F2 generations of CMS-type hybrid soybean. In International Conference on Utilization of Heterosis in Crops, Xi’an, China, 19–22 August 2012.
[23]
Sun, H. Progress and problems of hybrid soybean development. In International Conference on Utilization of Heterosis in Crops, Xi’an, China, 19–22 August 2012.
[24]
Yang, S.; Zhao, T.; Gai, J. Studies on the utilization of heterosis at the National Center for Soybean Improvement. In International Conference on Utilization of Heterosis in Crops, Xi’an, China, 19–22 August 2012.
[25]
Zong, R.; Li, H.; Li, F.; Li, H.; Xu, M. Research progress on three-line hybrid soybean and prospects of soybean heterosis application. In International Conference on Utilization of Heterosis in Crops, Xi’an, China, 19–22 August 2012.
[26]
Horner, H.T.; Healy, R.A.; Palmer, R.G. Floral nectary fine structure and development in Glycine max L. (Fabaceae). Int. J. Plant Sci. 2003, 164, 675–690.
[27]
Palmer, R.G.; Perez, P.T.; Ortiz-Perez, E.; Maalouf, F.; Suso, M.J. The role of crop-pollinator relationship in breeding for pollinator-friendly legumes: From a breeding perspective. Euphytica 2009, 170, 35–52, doi:10.1007/s10681-009-9953-0.
[28]
Buss, G.R. Inheritance of a male-sterile mutant from irradiated Essex soybeans. Soybean Genet. Newsl. 1983, 10, 104–108.
[29]
Woodworth, C.M. Inheritance of cotyledon, seed-coat, hilum and pubescence colors in soy-beans. Genetics 1921, 6, 487.
[30]
Lohnes, D.G.; Specht, J.E.; Cregan, P.B. Evidence for homoeologous linkage groups in soybean. Crop Sci. 1997, 37, 254–257, doi:10.2135/cropsci1997.0011183X003700010045x.
[31]
Carter, T.E., Jr.; Burton, J.W. A Tight Linkage between the ms5 Male-Sterility Gene and the Green Cotyledon Trait in Soybean. In Agron. Abst.; American Society of Agronomy, Inc.: Madison, WI, USA, 1992; p. 91.
[32]
Burton, J.W.; Carter, T.E.J. A method for production of experimental quantities of hybrid soybean seed. Crop Sci. 1983, 23, 388–390, doi:10.2135/cropsci1983.0011183X002300020049x.
[33]
Cooper, R.L.; Tew, J. Use of leaf cutter bees in the production of hybrid soybean seed. In Annual Meeting Abstracts. [CD-ROM]; ASA, CSSA, and SSSA: Madison, WI, USA, 2001.
[34]
Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999.
[35]
Horner, H.T.; Healy, R.A.; Ren, G.; Fritz, D.; Klyne, A.; Seames, C.; Thornburg, R.W. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am. J. Bot. 2007, 94, 12–24, doi:10.3732/ajb.94.1.12.
[36]
Spurr, A.R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 1969, 26, 31–34, doi:10.1016/S0022-5320(69)90033-1.
[37]
Fehr, W.R.; Caviness, C.E. Stages of soybean development. In Special Report 80; Iowa State University, Coop. Ext. Serv.; Iowa State University of Science and Technology: Ames, IA, USA, 1977.
[38]
Sandhu, D.; Gao, H.; Cianzio, S.; Bhattacharyya, M.K. Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics 2004, 168, 2157–2167, doi:10.1534/genetics.104.032037.
[39]
Michelmore, R.W.; Paran, I.; Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 1991, 88, 9828–9832, doi:10.1073/pnas.88.21.9828.
[40]
Song, Q.J.; Marek, L.F.; Shoemaker, R.C.; Lark, K.G.; Concibido, V.C.; Delannay, X.; Specht, J.E.; Cregan, P.B. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 2004, 109, 122–128, doi:10.1007/s00122-004-1602-3.
Palmer, R.G. A desynaptic mutant in the soybean. J. Hered. 1974, 65, 280–286.
[46]
Guiamet, J.J.; Schwartz, E.; Pichersky, E.; Nooden, L.D. Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol. 1991, 96, 227–231, doi:10.1104/pp.96.1.227.
[47]
Chao, W.S.; Liu, V.; Thomson, W.W.; Platt, K.; Walling, L.L. The impact of chlorophyll-retention mutations, d1d2 and cyt-G1, during embryogeny in soybean. Plant Physiol. 1995, 107, 253–262.
[48]
Eagles, H.A.; Bariana, H.S.; Ogbonnaya, F.C.; Rebetzke, G.J.; Hollamby, G.J.; Henry, R.J.; Henschke, P.H.; Carter, M. Implementation of markers in Australian wheat breeding. Crop Pasture Sci. 2001, 52, 1349–1356, doi:10.1071/AR01067.
[49]
Rawat, N.; Neelam, K.; Tiwari, V.K.; Randhawa, G.S.; Friebe, B.; Gill, B.S.; Dhaliwal, H.S.; Somers, D. Development and molecular characterization of wheat, Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 2011, 54, 943–953, doi:10.1139/g11-059.
[50]
Andersen, J.R.; Lubberstedt, T. Functional markers in plants. Trends Plant Sci. 2003, 8, 554–560, doi:10.1016/j.tplants.2003.09.010.