全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Growth Media Induces Variation in Cell Wall Associated Gene Expression in Arabidopsis thaliana Pollen Tube

DOI: 10.3390/plants2030429

Keywords: Arabidopsis thaliana, pollen tube, pollen tube growth media, Arabinogalactan proteins, real-time PCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

The influence of three different pollen germination media on the transcript profile of Arabidopsis pollen tubes has been assessed by real-time PCR on a selection of cell wall related genes, and by a statistical analysis of microarray Arabidopsis pollen tube data sets. The qPCR assays have shown remarkable differences on the transcript levels of specific genes depending upon the formulation of the germination medium used. With the aid of principal component analysis performed on existing microarray data, a subset of genes has been identified that is more prone to produce diverging transcript levels. A functional classification of those genes showed that the clusters with higher number of members were those for hydrolase activity (based in molecular function) and for cell wall (based in cellular component). Taken together, these results may indicate that the nutrient composition of the pollen germination media influences pollen tube metabolism and that caution must be taken when interpreting transcriptomic data of pollen tubes.

References

[1]  Wang, Y.F.; Fan, L.M.; Zhang, W.Z.; Zhang, W.; Wu, W.H. Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol. 2004, 136, 3892–3904, doi:10.1104/pp.104.042754.
[2]  Cheung, A.Y.; Wu, H.M. Structural and functional compartmentalization in pollen tubes. J. Exp. Bot. 2007, 58, 75–82, doi:10.1093/jxb/erl122.
[3]  Coimbra, S.; Costa, M.; Mendes, M.A.; Pereira, A.M.; Pinto, J.; Pereira, L.G. Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. Sex. Plant Reprod. 2010, 23, 199–205, doi:10.1007/s00497-010-0136-x.
[4]  Fan, L.M.; Wang, Y.F.; Wang, H.; Wu, W.H. In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J. Exp. Bot. 2001, 52, 1603–1614, doi:10.1093/jexbot/52.361.1603.
[5]  Honys, D.; Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5, R85, doi:10.1186/gb-2004-5-11-r85.
[6]  Pina, C.; Pinto, F.; Feijó, J.A.; Becker, J.D. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005, 138, 744–756, doi:10.1104/pp.104.057935.
[7]  Becker, J.D.; Feijó, J.A. How many genes are needed to make a pollen tube? Lessons from transcriptomics. Ann. Bot. 2007, 100, 1117–1123, doi:10.1093/aob/mcm208.
[8]  Wang, Y.; Zhang, W.Z.; Song, L.F.; Zou, J.J.; Su, Z.; Wu, W.H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 2008, 148, 1201–1211, doi:10.1104/pp.108.126375.
[9]  Boavida, L.C.; McCormick, S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 2007, 52, 570–582, doi:10.1111/j.1365-313X.2007.03248.x.
[10]  Higashiyama, T.; Kuroiwa, H.; Kawano, S.; Kuroiwa, T. Guidance in vitro of the pollen tube to the naked embryo sac of torenia fournieri. Plant Cell 1998, 10, 2019–2032.
[11]  Palanivelu, R.; Preuss, D. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 2006, 5, 6–7.
[12]  Taylor, L.P.; Hepler, P.K. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 461–491, doi:10.1146/annurev.arplant.48.1.461.
[13]  Qin, Y.; Leydon, A.R.; Manziello, A.; Pandey, R.; Mount, D.; Denic, S.; Vasic, B.; Johnson, M.A.; Palanivelu, R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009, 5, e1000621, doi:10.1371/journal.pgen.1000621.
[14]  Costa, M.; Nobre, S.; Becker, J.; Masiero, S.; Amorim, M.I.; Pereira, L.G.; Coimbra, S. On hand, putative ligands for arabinogalactan proteins in Arabidopsis pollen development. BMC Plant Biol. 2013, 13, 7, doi:10.1186/1471-2229-13-7.
[15]  Daher, F.B.; Geitmann, A. Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 2011, 12, 1537–1551, doi:10.1111/j.1600-0854.2011.01256.x.
[16]  Burton, R.A.; Gidley, M.J.; Fincher, G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010, 6, 724–732, doi:10.1038/nchembio.439.
[17]  Coimbra, S.; Almeida, J.; Junqueira, V.; Costa, M.; Pereira, L.G. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J. Exp. Bot. 2007, 58, 4027–4035, doi:10.1093/jxb/erm259.
[18]  Coimbra, S.; Costa, M.; Jones, B.; Mendes, M.A.; Pereira, L.G. Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J. Exp. Bot. 2009, 60, 3133–3142, doi:10.1093/jxb/erp148.
[19]  Del Campillo, E.; Abdel-Aziz, A.; Crawford, D.; Patterson, S.E. Root cap specific expression of an endo-beta-1,4-D-glucanase (cellulase): A new marker to study root development in Arabidopsis. Plant Mol. Biol. 2004, 56, 309–323, doi:10.1007/s11103-004-3380-3.
[20]  Valdivia, E.R.; Stephenson, A.G.; Durachko, D.M.; Cosgrove, D. Class B beta-expansins are needed for pollen separation and stigma penetration. Sex. Plant Reprod. 2009, 22, 141–152, doi:10.1007/s00497-009-0099-y.
[21]  Suzuki, T.; Masaoka, K.; Nishi, M.; Nakamura, K.; Ishiguro, S. Identification of kaonashi mutants showing abnormal pollen exine structure in Arabidopsis thaliana. Plant Cell Physiol. 2008, 49, 1465–1477, doi:10.1093/pcp/pcn131.
[22]  Vicré, M.; Santaella, C.; Blanchet, S.; Gateau, A.; Driouich, A. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with Rhizobacteria. Plant Phys. 2005, 138, 998–1008, doi:10.1104/pp.104.051813.
[23]  Sterling, J.D.; Atmodjo, M.A.; Inwood, S.E.; Kolli, V.S.; Quigley, H.F.; Hahn, M.G.; Mohnen, D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 5236–5241.
[24]  Caffall, K.H.; Pattathil, S.; Phillips, S.E.; Hahn, M.G.; Mohnen, D. Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol. Plant 2009, 2, 1000, doi:10.1093/mp/ssp062.
[25]  Eckart, N.A. VANGUARD1-At the forefront of pollen tube growth. Plant Cell 2005, 17, 327–329, doi:10.1105/tpc.104.170210.
[26]  Cosgrove, D.J. Creeping walls, softening fruit, and penetrating pollen tubes: The growing roles of expansions. Proc. Natl. Acad. Sci. USA 1997, 94, 5504–5505, doi:10.1073/pnas.94.11.5504.
[27]  Tabouchi, A.; Li, L.-C.; Cosgrove, D.J. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen. Plant J. 2011, 68, 546–559, doi:10.1111/j.1365-313X.2011.04705.x.
[28]  Jolliffe, I.T. Principal Component Analysis, 2nd ed. ed.; Springer-Verlag: Berlim, Germany, 1986.
[29]  Raychaudhuri, S.; Stuart, J.M.; Altman, R.B. Principal Components Analysis to summarize microarray experiments: Application to sporulation time series. Pac. Symp. Biocomput. 2000, 2000, 455–466.
[30]  Smyth, D.R.; Bowman, J.L.; Meyerowitz, E.M. Early flower development in Arabidopsis. Plant Cell 1990, 2, 755–767.
[31]  Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408, doi:10.1006/meth.2001.1262.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133