The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors ( Aux/IAA) and transcription factors ( ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.
References
[1]
Dixon, G.R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J. Plant Growth Regul. 2009, 28, 194–202, doi:10.1007/s00344-009-9090-y.
[2]
Ludwig-Müller, J. Plant defence—What can we learn from clubroots? Australas. Plant Pathol. 2009, 38, 318–324, doi:10.1071/AP09020.
[3]
Donald, C.; Porter, I. Integrated control of clubroot. J. Plant Growth Regul. 2009, 28, 289–303, doi:10.1007/s00344-009-9094-7.
[4]
Ludwig-Müller, J.; Prinsen, E.; Rolfe, S.A.; Scholes, J.D. Metabolism and plant hormone action during clubroot disease. J. Plant Growth Regul. 2009, 28, 229–244.
[5]
Kageyama, K.; Asano, T. Life cycle of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 203–211, doi:10.1007/s00344-009-9101-z.
[6]
Ludwig-Müller, J.; Pieper, K.; Ruppel, M.; Cohen, J.D.; Epstein, E.; Kiddle, G.; Bennett, R. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 1999, 208, 409–419, doi:10.1007/s004250050576.
[7]
Siemens, J.; Keller, I.; Sarx, J.; Kunz, S.; Schuller, A.; Nagel, W.; Schmülling, T.; Parniske, M.; Ludwig-Müller, J. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant Microbe Interact. 2006, 19, 480–494, doi:10.1094/MPMI-19-0480.
[8]
Devos, S.; Vissenberg, K.; Verbelen, J.-P.; Prinsen, E. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: Impacts on cell wall metabolism and hormone balance. New Phytol. 2005, 166, 241–250.
[9]
Grsic-Rausch, S.; Kobelt, P.; Siemens, J.M.; Bischoff, M.; Ludwig-Müller, J. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiol. 2000, 122, 369–378, doi:10.1104/pp.122.2.369.
[10]
P?sold, S.; Siegel, I.; Seidel, C.; Ludwig-Müller, J. Flavonoid accumulation in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen Plasmodiophora brassicae. Mol. Plant Pathol. 2010, 11, 545–562, doi:10.1111/j.1364-3703.2010.00628.x.
[11]
Neuhaus, K.; Grsic-Rausch, S.; Sauerteig, S.; Ludwig-Müller, J. Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. J. Plant Physiol. 2000, 156, 756–761, doi:10.1016/S0176-1617(00)80243-6.
[12]
Dharmasiri, N.; Dharmasiri, S.; Estelle, M. The F-Box Protein TIR1 is an auxin receptor. Nature 2005, 435, 441–445, doi:10.1038/nature03543.
Christian, M.; Steffens, B.; Schenck, D.; Burmester, S.; B?ttger, M.; Lüthen, H. How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol. 2006, 8, 346–352, doi:10.1055/s-2006-923965.
[15]
Petroski, M.D.; Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2005, 6, 9–20, doi:10.1038/nrm1547.
[16]
Santner, A.; Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 2009, 459, 1071–1078, doi:10.1038/nature08122.
Reed, J.W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 2001, 6, 420–425.
[19]
Hagen, G.; Guilfoyle, T.J. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49, 373–385, doi:10.1023/A:1015207114117.
[20]
Staswick, P.E.; Serban, B.; Rowe, M.; Tiryaki, I.; Maldonado, M.T.; Maldonado, M.C.; Suza, W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 2005, 17, 616–627, doi:10.1105/tpc.104.026690.
[21]
Park, J.-E.; Park, J.-Y.; Kim, Y.-S.; Staswick, P.E.; Jeon, J.; Yun, J.; Kim, S.-Y.; Lee, Y.-H.; Park, C.-M. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 2007, 282, 10036–10046, doi:10.1074/jbc.M610524200.
[22]
Zhang, Z.; Li, Q.; Li, Z.; Staswick, P.E.; Wang, M.; Zhu, Y.; He, Z. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol. 2007, 145, 450–464, doi:10.1104/pp.107.106021.
[23]
Wang, M.-Y.; Liu, X.-T.; Chen, Y.; Xu, X.-J.; Yu, B.; Zhang, S.-Q.; Li, Q.; He, Z.-H. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. J. Integr. Plant Biol. 2012, 54, 471–485, doi:10.1111/j.1744-7909.2012.01131.x.
[24]
Staswick, P.E.; Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 2004, 16, 2117–2127, doi:10.1105/tpc.104.023549.
[25]
Thines, B.; Katsir, L.; Melotto, M.; Niu, Y.; Mandaokar, A.; Liu, G.; Nomura, K.; He, S.Y.; Howe, G.A.; Browse, J. JAZ repressor proteins are targets of the SCF complex during jasmonate signalling. Nature 2007, 448, 661–666, doi:10.1038/nature05960.
[26]
Steffens, B.; Lüthen, H. New methods to analyse auxin-induced growth. II. The swelling reaction of protoplasts—A model system for the analysis of auxin signal transduction. Plant Growth Regul. 2000, 32, 115–122, doi:10.1023/A:1010789125122.
[27]
Chen, J.G.; Ullah, H.; Young, J.C.; Sussman, M.R.; Jones, A. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 2001, 15, 902–911, doi:10.1101/gad.866201.
[28]
Fuchs, I.; Philippar, K.; Hedrich, R. Ion channels meet auxin action. Plant Biol. 2006, 8, 353–359, doi:10.1055/s-2006-924121.
[29]
Alix, K.; Lariagon, C.; Delourme, R.; Manzanares-Dauleux, M.J. Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A. thaliana-Plasmodiophora brassicae interaction. Plant Breed. 2007, 126, 218–221, doi:10.1111/j.1439-0523.2007.01314.x.
[30]
Devos, S.; Prinsen, E. Plant hormones: A key in clubroot development. Commun. Agric. Appl. Biol. Sci. 2006, 71, 869–872.
[31]
Winter, D.; Vinegar, B.; Nahal, H.; Ammar, R.; Wilson, G.V.; Provart, N.J. An “Electronic Fluorescent Pictograph” Browser for exploring and analyzing large-scale biological data sets. PLoS One 2007, 2, e718, doi:10.1371/journal.pone.0000718.
[32]
Parry, G.; Calderon-Villalobos, L.I.; Prigge, M.; Peret, B.; Dharmasiri, S.; Itoh, H.; Lechner, E.; Gray, W.M.; Bennett, M.; Estelle, M. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl. Acad. Sci. USA 2009, 106, 22540–22545, doi:10.1073/pnas.0911967106.
[33]
Greenham, K.; Santner, A.; Castillejo, C.; Mooney, S.; Sairanen, I.; Ljung, K.; Estelle, M. The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr. Biol. 2011, 21, 520–525, doi:10.1016/j.cub.2011.02.029.
[34]
Dharmasiri, N.; Dharmasiri, S.; Weijers, D.; Lechner, E.; Yamada, M.; Hobbie, L.; Ehrismann, J.S.; Jürgens, G.; Estelle, M. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 2005, 9, 109–119, doi:10.1016/j.devcel.2005.05.014.
[35]
Devos, S.; Laukens, K.; Deckers, P.; van Der Straeten, D.; Beeckman, T.; Inzé, D.; van Onckelen, H.; Witters, E.; Prinsen, E. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol. Plant Microbe Interact. 2006, 19, 1431–1443, doi:10.1094/MPMI-19-1431.
[36]
Hardke, C.S.; Ckurshumova, W.; Vidaurre, D.P.; Singh, S.A.; Stamatiou, G.; Tiwari, S.B.; Hagen, G.; Guilfoyle, T.J.; Berleth, T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPHIC HYPOCOTYL 4. Development 2004, 131, 1089–1100, doi:10.1242/dev.00925.
[37]
Berleth, T.; Jürgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 1993, 118, 575–587.
[38]
Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 2007, 19, 118–130, doi:10.1105/tpc.106.047761.
[39]
Schlereth, A.; M?ller, B.; Liu, W.; Kientz, M.; Flipse, J.; Rademacher, E.H.; Schmid, M.; Jürgens, G.; Weijers, D. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 2010, 464, 913–916, doi:10.1038/nature08836.
[40]
Gutierrez, L.; Mongelard, G.; Floková, K.; P?curar, D.I.; Novák, O.; Staswick, P.; Kowalczyk, M.; P?curar, M.; Demailly, H.; Geiss, G.; Bellini, C. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 2012, 24, 2515–2527, doi:10.1105/tpc.112.099119.
[41]
Tian, C.-E.; Muto, H.; Higuchi, K.; Matamura, T.; Tatematsu, K.; Koshiba, T.; Yamamoto, K.T. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J. 2004, 40, 333–343, doi:10.1111/j.1365-313X.2004.02220.x.
[42]
De Rybel, B.; Vassileva, V.; Parizot, B.; Demeulenaere, M.; Grunewald, W.; Audenaert, D.; van Camenhout, J.; Overvoorde, P.; Jansen, L.; Vanneste, S.; et al. A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 2010, 20, 1697–1706, doi:10.1016/j.cub.2010.09.007.
[43]
Kobelt, P. Die Verbreitung von sekund?ren Plasmodien von Plasmodiophora brassicae im Wurzelgewebe von Arabidopsis thaliana nach immunhistologischer Markierung des plasmodialen Zytoskeletts. Ph.D. Thesis, Freie Universit?t Berlin, Berlin, Germany, 2000.
[44]
Belin, C.; Megies, C.; Hauserova, E.; Lopez-Molina, L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 2009, 21, 2253–2268, doi:10.1105/tpc.109.067702.
[45]
Mallory, A.C.; Bartel, D.P.; Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 2005, 17, 1360–1375, doi:10.1105/tpc.105.031716.
[46]
Nakamura, A.; Nakajima, N.; Goda, H.; Shimada, Y.; Hayashi, K.; Nozaki, H.; Asami, T.; Yoshida, S.; Fujioka, S. Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J. 2006, 45, 193–205, doi:10.1111/j.1365-313X.2005.02582.x.
[47]
Jülke, S.; Ludwig-Müller, J. Modulation of lipid transfer proteins alters clubroot development in Arabidopsis thaliana. Acta Hortic. 2010, 867, 165–172.
[48]
Arabidopsis eFP browser. Available online: http://bar.utoronto.ca/ (accessed on 22 June 2012).
[49]
Bandurski, R.S.; Cohen, J.D.; Slovin, J.; Reinecke, D.M. Auxin Biosynthesis and Metabolism. In Plant Hormones: Physiology, Biochemistry and Molecular Biology; Davies, P.J., Ed.; Kluwer: Dordrecht, The Netherlands, 1995; pp. 39–65.
[50]
Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773, doi:10.1093/jxb/erq412.
[51]
Seidel, C.; Walz, A.; Park, S.; Cohen, J.D.; Ludwig-Müller, J. Indole-3-acetic acid protein conjugates: Novel players in auxin homeostasis. Plant Biol. 2006, 8, 340–345, doi:10.1055/s-2006-923802.
[52]
Siemens, J.; Glawischnig, E.; Ludwig-Müller, J. Indole glucosinolates and camalexin do not influence the development of the clubroot disease in Arabidopsis thaliana. J. Phytopathol. 2008, 156, 332–337, doi:10.1111/j.1439-0434.2007.01359.x.
[53]
Siemens, J.; Nagel, M.; Ludwig-Müller, J.; Sacristán, M.D. The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: Parameters for disease quantification and screening of mutant lines. J. Phytopathol. 2002, 150, 592–605, doi:10.1046/j.1439-0434.2002.00818.x.
[54]
Wang, H.; Tian, C.; Duan, J.; Wu, K. Research progresses on GH3s, one family of primary auxin-responsive genes. Plant Growth Regul. 2008, 56, 225–232, doi:10.1007/s10725-008-9313-4.
[55]
Jones, B.; Ljung, K. Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop. Plant Signal. Behav. 2011, 6, 901–904, doi:10.4161/psb.6.6.15323.
[56]
Dohmann, E.; Kuhnle, C.; Schwechheimer, C. Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell 2005, 17, 1967–1978, doi:10.1105/tpc.105.032870.
[57]
Staswick, P. Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA, 2013.
[58]
Ludwig-Müller, J.; Jülke, S.; Bierfreund, N.M.; Decker, E.L.; Reski, R. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol. 2009, 181, 323–338, doi:10.1111/j.1469-8137.2008.02677.x.
[59]
González-Lamothe, R.; El Oirdi, M.; Brisson, N.; Bouarab, K. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 2012, 24, 762–777, doi:10.1105/tpc.111.095190.
[60]
Shi, J.-H.; Yang, Z.-B. Is ABP1 an auxin receptor yet? Mol. Plant 2011, 4, 635–640, doi:10.1093/mp/ssr050.
[61]
Scherer, G.F.E. AUXIN-BINDING-PROTEIN1, the second auxin receptor: What is the significance of a two-receptor concept in plant signal transduction? J. Exp. Bot. 2011, 62, 3339–3357, doi:10.1093/jxb/err033.
[62]
Klode, M.; Dahlke, R.I.; Sauter, M.; Steffens, B. Expression and subcellular localization of Arabidopsis thaliana auxin-binding protein 1 (ABP1). J. Plant Growth Regul. 2011, 30, 416–424, doi:10.1007/s00344-011-9203-2.
[63]
Blatt, M.R.; Thiel, G. K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin. Plant J. 1994, 5, 55–68.
[64]
Philippar, K.; Fuchs, I.; Lüthen, H.; Hoth, S.; Bauer, C.S.; Haga, K.; Thiel, G.; Ljung, K.; Sandberg, G.; B?ttger, M.; Becker, D.; Hedrich, R. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. USA 1999, 96, 12186–12191.
[65]
Fuchs, I.; Philippar, K.; Ljung, K.; Sandberg, G.; Hedrich, R. Blue light regulates an auxin-induced K+ channel gene in the maize coleoptile. Proc. Natl. Acad. Sci. USA 2003, 100, 11795–11800, doi:10.1073/pnas.2032704100.
[66]
Philippar, K.; Ivashikina, N.; Ache, P.; Christian, M.; Lüthen, H.; Palme, K.; Hedrich, R. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 2004, 37, 815–827, doi:10.1111/j.1365-313X.2003.02006.x.
[67]
Claussen, M.; Lüthen, H.; Blatt, M.; B?ttger, M. Auxin-induced growth and its linkage to potassium channels. Planta 1997, 201, 227–234, doi:10.1007/BF01007708.
[68]
F?hling, M.; Graf, H.; Siemens, J. Pathotype-separation of Plasmodiophora brassicae by the host plant. J. Phytopathol. 2003, 151, 425–430, doi:10.1046/j.1439-0434.2003.00744.x.
[69]
Jefferson, R.A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 1987, 5, 387–405, doi:10.1007/BF02667740.
[70]
The Arabidopsis Information Resource. Available online: http://www.arabidopsis.org (accessed on 18 July 2013).