Calcium (Ca 2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.
References
[1]
Li, S.; Assmann, S.M.; Albert, R. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol. 2006, 4, e312, doi:10.1371/journal.pbio.0040312.
[2]
Kim, T.H.; Bohmer, M.; Hu, H.; Nishimura, N.; Schroeder, J.I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 2010, 61, 561–591.
[3]
Guan, Y.; Guo, J.; Li, H.; Yang, Z. Signaling in pollen tube growth: Crosstalk, feedback, and missing links. Mol. Plant 2013, 6, 1053–1064, doi:10.1093/mp/sst070.
[4]
Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell 2005, 17, 2142–2155, doi:10.1105/tpc.105.032508.
[5]
Dodd, A.N.; Kudla, J.; Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol. 2010, 61, 593–620, doi:10.1146/annurev-arplant-070109-104628.
[6]
Schroeder, J.I.; Thuleau, P. Ca2+ channels in higher plant cells. Plant Cell 1991, 3, 555–559.
Hedrich, R. Ion channels in plants. Physiol. Rev. 2012, 92, 1777–1811, doi:10.1152/physrev.00038.2011.
[9]
Allen, G.J.; Chu, S.P.; Harrington, C.L.; Schumacher, K.; Hoffmann, T.; Tang, Y.Y.; Grill, E.; Schroeder, J.I. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 2001, 411, 1053–1057, doi:10.1038/35082575.
[10]
Day, B.; Henty, J.L.; Porter, K.J.; Staiger, C.J. The pathogen-actin connection: A platform for defense signaling in plants. Annu. Rev. Phytopathol. 2011, 49, 483–506, doi:10.1146/annurev-phyto-072910-095426.
[11]
Volkmann, D.; Balu?ka, F. Actin cytoskeleton in plants: From transport networks to signaling networks. Microsc. Res. Tech. 1999, 47, 135–154, doi:10.1002/(SICI)1097-0029(19991015)47:2<135::AID-JEMT6>3.0.CO;2-1.
[12]
Henty-Ridilla, J.L.; Shimono, M.; Li, J.; Chang, J.H.; Day, B.; Staiger, C.J. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 2013, 9, e1003290, doi:10.1371/journal.ppat.1003290.
[13]
Hussey, P.J.; Ketelaar, T.; Deeks, M.J. Control of the actin cytoskeleton in plant cell growth. Annu. Rev. Plant Biol. 2006, 57, 109–125, doi:10.1146/annurev.arplant.57.032905.105206.
[14]
Blanchoin, L.; Boujemaa-Paterski, R.; Henty, J.L.; Khurana, P.; Staiger, C.J. Actin dynamics in plant cells: A team effort from multiple proteins orchestrates this very fast-paced game. Curr. Opin. Plant Biol. 2010, 13, 714–723, doi:10.1016/j.pbi.2010.09.013.
[15]
Staiger, C.J.; Poulter, N.S.; Henty, J.L.; Franklin-Tong, V.E.; Blanchoin, L. Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot. 2010, 61, 1969–1986, doi:10.1093/jxb/erq012.
[16]
Snowman, B.N.; Kovar, D.R.; Shevchenko, G.; Franklin-Tong, V.E.; Staiger, C.J. Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 2002, 14, 2613–2626, doi:10.1105/tpc.002998.
[17]
Staiger, C.J.; Blanchoin, L. Actin dynamics: Old friends with new stories. Curr. Opin. Plant Biol. 2006, 9, 554–562, doi:10.1016/j.pbi.2006.09.013.
[18]
Ahmad, A.; Zhang, Y.; Cao, X.-F. Decoding the epigenetic language of plant development. Mol. Plant 2010, 3, 719–728, doi:10.1093/mp/ssq026.
Beattie, G.A.; Lindow, S.E. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 1995, 33, 145–172, doi:10.1146/annurev.py.33.090195.001045.
[27]
Sirichandra, C.; Wasilewska, A.; Vlad, F.; Valon, C.; Leung, J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J. Exp. Bot. 2009, 60, 1439–1463, doi:10.1093/jxb/ern340.
Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126, 969–980, doi:10.1016/j.cell.2006.06.054.
[30]
Acharya, B.; Assmann, S. Hormone interactions in stomatal function. Plant Mol. Biol. 2009, 69, 451–462, doi:10.1007/s11103-008-9427-0.
[31]
Pandey, S.; Zhang, W.; Assmann, S.M. Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett. 2007, 581, 2325–2336, doi:10.1016/j.febslet.2007.04.008.
[32]
Zhang, W.; He, S.Y.; Assmann, S.M. The plant innate immunity response in stomatal guard cells invokes g-protein-dependent ion channel regulation. Plant J. 2008, 56, 984–996, doi:10.1111/j.1365-313X.2008.03657.x.
[33]
Zhang, W. Roles of heterotrimeric g proteins in guard cell ion channel regulation. Plant Signal. Behav. 2011, 6, 986–990, doi:10.4161/psb.6.7.15461.
Fu, Y.; Wu, G.; Yang, Z. Rop gtpase-dependent dynamics of tip-localized f-actin controls tip growth in pollen tubes. J. Cell Biol. 2001, 152, 1019–1032, doi:10.1083/jcb.152.5.1019.
[36]
Hill, A.E.; Shachar-Hill, B.; Skepper, J.N.; Powell, J.; Shachar-Hill, Y. An osmotic model of the growing pollen tube. PLoS One 2012, 7, e36585.
[37]
Gu, Y.; Fu, Y.; Dowd, P.; Li, S.; Vernoud, V.; Gilroy, S.; Yang, Z. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J. Cell Biol. 2005, 169, 127–138, doi:10.1083/jcb.200409140.
[38]
Michard, E.; Lima, P.T.; Borges, F.; Silva, A.C.; Portes, M.T.; Carvalho, J.E.; Gilliham, M.; Liu, L.H.; Obermeyer, G.; Feijo, J.A. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 2011, 332, 434–437, doi:10.1126/science.1201101.
[39]
Zhang, H.; Qu, X.; Bao, C.; Khurana, P.; Wang, Q.; Xie, Y.; Zheng, Y.; Chen, N.; Blanchoin, L.; Staiger, C.J.; et al. Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 2010, 22, 2749–2767, doi:10.1105/tpc.110.076257.
[40]
Fan, L.M.; Wang, Y.F.; Wang, H.; Wu, W.H. In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J. Exp. Bot. 2001, 52, 1603–1614, doi:10.1093/jexbot/52.361.1603.
[41]
Wang, Y.F.; Fan, L.M.; Zhang, W.Z.; Zhang, W.; Wu, W.H. Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol. 2004, 136, 3892–3904, doi:10.1104/pp.104.042754.
[42]
Klyachko, N.L.; Kulikova, A.L.; Erokhina, M.A. Plant polysome binding to the actin cytoskeleton as a target for physiological regulation. Cell Biol. Int. 2003, 27, 217–218, doi:10.1016/S1065-6995(02)00314-1.
[43]
Fu, Y. The actin cytoskeleton and signaling network during pollen tube tip growth. J. Integr. Plant Biol. 2010, 52, 131–137, doi:10.1111/j.1744-7909.2010.00922.x.
[44]
Kim, M.; Hepler, P.K.; Eun, S.O.; Ha, K.S.; Lee, Y. Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol. 1995, 109, 1077–1084.
[45]
Kohno, T.; Shimmen, T. Accelerated sliding of pollen tube organelles along characeae actin bundles regulated by Ca2+. J. Cell Biol. 1988, 106, 1539–1543, doi:10.1083/jcb.106.5.1539.
[46]
Gao, X.Q.; Chen, J.; Wei, P.C.; Ren, F.; Wang, X.C. Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. Plant Cell Rep. 2008, 27, 1655–1665, doi:10.1007/s00299-008-0581-2.
[47]
Feijó, J.A.; Sainhas, J.; Holdaway-Clarke, T.; Cordeiro, M.S.; Kunkel, J.G.; Hepler, P.K. Cellular oscillations and the regulation of growth: The pollen tube paradigm. BioEssays 2001, 23, 86–94.
[48]
Li, L.J.; Ren, F.; Gao, X.Q.; Wei, P.C.; Wang, X.C. The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in arabidopsis. Plant Cell Environ. 2013, 36, 484–497, doi:10.1111/j.1365-3040.2012.02592.x.
[49]
Zhang, W.; Fan, L.M. Actin dynamics regulates voltage-dependent calcium-permeable channels of the vicia faba guard cell plasma membrane. J. Integr. Plant Biol. 2009, 51, 912–921, doi:10.1111/j.1744-7909.2009.00859.x.
[50]
Zhang, W.; Fan, L.M.; Wu, W.H. Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol. 2007, 143, 1140–1151, doi:10.1104/pp.106.091405.
[51]
Elliott, D.C.; Petkoff, H.S. Measurement of cytoplasmic free calcium in plant protoplasts. Plant Sci. 1990, 67, 125–131, doi:10.1016/0168-9452(90)90058-V.
[52]
Sebastiani, L.; Lindberg, S.; Vitagliano, C. Cytoplasmic free Ca2+ dynamics in single tomato (lycopersicon esculentum) protoplasts subjected to chilling temperatures. Physiol. Plant 1999, 105, 239–244, doi:10.1034/j.1399-3054.1999.105208.x.
[53]
Kader, M.A.; Lindberg, S.; Seidel, T.; Golldack, D.; Yemelyanov, V. Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and -sensitive rice (oryza sativa) cultivars. Physiol. Plant 2007, 130, 99–111, doi:10.1111/j.1399-3054.2007.00890.x.
[54]
Bothwell, J.H.F.; Brownlee, C.; Hetherington, A.M.; Ng, C.K.Y.; Wheeler, G.L.; McAinsh, M.R. Biolistic delivery of Ca2+ dyes into plant and algal cells. Plant J. 2006, 46, 327–335, doi:10.1111/j.1365-313X.2006.02687.x.
[55]
Swanson, S.J.; Choi, W.-G.; Chanoca, A.; Gilroy, S. In vivo imaging of Ca2+, ph, and reactive oxygen species using fluorescent probes in plants. Annu. Rev. Plant Biol. 2011, 62, 273–297, doi:10.1146/annurev-arplant-042110-103832.
[56]
Miyawaki, A.; Griesbeck, O.; Heim, R.; Tsien, R.Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. USA 1999, 96, 2135–2140, doi:10.1073/pnas.96.5.2135.
Fairley-Grenot, K.A.; Assmann, S.M. Permeation of Ca2+ through K+ channels in the plasma membrane of Vicia faba guard cells. J. Membr. Biol. 1992, 128, 103–113.
[59]
Chen, C.Y.; Wong, E.I.; Vidali, L.; Estavillo, A.; Hepler, P.K.; Wu, H.-M.; Cheung, A.Y. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 2002, 14, 2175–2190, doi:10.1105/tpc.003038.
[60]
Pi?eros, M.; Tester, M. Calcium channels in higher plant cells: Selectivity, regulation and pharmacology. J. Exp. Bot. 1997, 48, 551–577, doi:10.1093/jxb/48.Special_Issue.551.
Peiter, E.; Maathuis, F.J.; Mills, L.N.; Knight, H.; Pelloux, J.; Hetherington, A.M.; Sanders, D. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 2005, 434, 404–408, doi:10.1038/nature03381.
[64]
Finn, J.T.; Grunwald, M.E.; Yau, K.-W. Cyclic nucleotide-gated ion channels: An extended family with diverse functions. Ann. Rev. Physiol. 1996, 58, 395–426, doi:10.1146/annurev.ph.58.030196.002143.
[65]
Lacombe, B.; Becker, D.; Hedrich, R.; DeSalle, R.; Hollmann, M.; Kwak, J.M.; Schroeder, J.I.; Le Novere, N.; Nam, H.G.; Spalding, E.P.; et al. The identity of plant glutamate receptors. Science 2001, 292, 1486–1487.
[66]
Hashimoto, K.; Kudla, J. Calcium decoding mechanisms in plants. Biochimie 2011, 93, 2054–2059, doi:10.1016/j.biochi.2011.05.019.
[67]
McCormack, E.; Braam, J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol. 2003, 159, 585–598, doi:10.1046/j.1469-8137.2003.00845.x.
[68]
Cooper, J.A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 1987, 105, 1473–1478, doi:10.1083/jcb.105.4.1473.
[69]
Gibbon, B.C.; Kovar, D.R.; Staiger, C.J. Latrunculin b has different effects on pollen germination and tube growth. Plant Cell 1999, 11, 2349–2363.
[70]
Eun, S.O.; Lee, Y. Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells. Planta 2000, 210, 1014–1017, doi:10.1007/s004250050711.
Schmit, A.C.; Lambert, A.M. Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells. Plant Cell 1990, 2, 129–138.
[73]
Kost, B.; Spielhofer, P.; Chua, N.-H. A GFP-mouse talin fusion protein labels plant actin filamentsin vivoand visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998, 16, 393–401, doi:10.1046/j.1365-313x.1998.00304.x.
Wang, Y.-S.; Motes, C.M.; Mohamalawari, D.R.; Blancaflor, E.B. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil. Cytoskeleton 2004, 59, 79–93, doi:10.1002/cm.20024.
[76]
Schenkel, M.; Sinclair, A.; Johnstone, D.; Bewley, J.D.; Mathur, J. Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein. Plant Methods 2008, 4, 21, doi:10.1186/1746-4811-4-21.
[77]
Vidali, L.; Rounds, C.M.; Hepler, P.K.; Bezanilla, M. Lifeact-megfp reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 2009, 4, e5744.
[78]
Era, A.; Tominaga, M.; Ebine, K.; Awai, C.; Saito, C.; Ishizaki, K.; Yamato, K.T.; Kohchi, T.; Nakano, A.; Ueda, T. Application of lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, marchantia polymorpha. Plant Cell Physiol. 2009, 50, 1041–1048, doi:10.1093/pcp/pcp055.
[79]
Eun, S.-O.; Lee, Y. Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol. 1997, 115, 1491–1498.
[80]
Hwang, J.U.; Suh, S.; Yi, H.; Kim, J.; Lee, Y. Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol. 1997, 115, 335–342.
[81]
Cárdenas, L.; Vidali, L.; Dom??nguez, J.; Pérez, H.; Sánchez, F.; Hepler, P.K.; Quinto, C. Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol. 1998, 116, 871–877, doi:10.1104/pp.116.3.871.
[82]
Herrmann, A.; Felle, H.H. Tip growth in root hair cells of Sinapis alba L.: Significance of internal and external Ca2+ and pH. New Phytol. 1995, 129, 523–533, doi:10.1111/j.1469-8137.1995.tb04323.x.
[83]
Wightman, R.; Turner, S.R. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J. 2008, 54, 794–805, doi:10.1111/j.1365-313X.2008.03444.x.
[84]
Fukuda, H.; Kobayashi, H. Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev. Growth Differ. 1989, 31, 9–16.
[85]
Herbette, S.; Cochard, H. Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiol. 2010, 153, 1932–1939, doi:10.1104/pp.110.155200.
[86]
De Silva, D.L.R.; Hetherington, A.M.; Mansfield, T.A. Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol. 1985, 100, 473–482, doi:10.1111/j.1469-8137.1985.tb02795.x.
[87]
Schroeder, J.I.; Hagiwara, S. Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 1989, 338, 427–430, doi:10.1038/338427a0.
[88]
Wang, X.Q.; Ullah, H.; Jones, A.M.; Assmann, S.M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 2001, 292, 2070–2072, doi:10.1126/science.1059046.
[89]
Fan, L.M.; Zhang, W.; Chen, J.G.; Taylor, J.P.; Jones, A.M.; Assmann, S.M. Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines. Proc. Natl. Acad. Sci. USA 2008, 105, 8476–8481.
[90]
Allan, A.C.; Fricker, M.D.; Ward, J.L.; Beale, M.H.; Trewavas, A.J. Two transduction pathways mediate rapid effects of abscisic acid in commelina guard cells. Plant Cell 1994, 6, 1319–1328.
[91]
Netting, A.G. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress. J. Exp. Bot. 2002, 53, 151–173, doi:10.1093/jexbot/53.367.151.
[92]
Gonugunta, V.K.; Srivastava, N.; Puli, M.R.; Raghavendra, A.S. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ. 2008, 31, 1717–1724.
[93]
Blatt, M.R. Ca2+ signalling and control of guard-cell volume in stomatal movements. Curr. Opin. Plant Biol. 2000, 3, 196–204.
[94]
Irving, H.R.; Gehring, C.A.; Parish, R.W. Changes in cytosolic ph and calcium of guard cells precede stomatal movements. Proc. Natl. Acad. Sci. USA 1992, 89, 1790–1794, doi:10.1073/pnas.89.5.1790.
[95]
Shimazaki, K.-I.; Kinoshita, T.; Nishimura, M. Involvement of calmodulin and calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping by guard cell protoplasts from Vicia faba L. Plant Physiol. 1992, 99, 1416–1421, doi:10.1104/pp.99.4.1416.
[96]
Curvetto, N.; Darjania, L.; Delmastro, S. Effect of two camp analogs on stomatal opening in Vicia faba: Possible relationship with cytosolic calcium concentration. Plant Physiol. Biochem. 1994, 32, 365–372.
[97]
McAinsh, M.R.; Clayton, H.; Mansfield, T.A.; Hetherington, A.M. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol. 1996, 111, 1031–1042.
[98]
Speth, E.B.; Melotto, M.; Zhang, W.; Assmann, S.M.; He, S.Y. Crosstalk in Pathogen and Hormonal Regulation of Guard Cell Signaling. In Signal Crosstalk in Plant Stress Responses; Wiley-Blackwell: Oxford, UK, 2009; pp. 96–112.
[99]
Ma, W.; Yoshioka, K.; Berkowitz, G.A. Cyclic nucleotide gated channels and ca-mediated signal transduction during plant innate immune response to pathogens. Plant Signal. Behav. 2007, 2, 548–550, doi:10.4161/psb.2.6.4803.
[100]
Cousson, A.; Vavasseur, A. Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 1998, 206, 308–314, doi:10.1007/s004250050405.
[101]
Ali, R.; Ma, W.; Lemtiri-Chlieh, F.; Tsaltas, D.; Leng, Q.; von Bodman, S.; Berkowitz, G.A. Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 2007, 19, 1081–1095, doi:10.1105/tpc.106.045096.
[102]
Qi, Z.; Verma, R.; Gehring, C.; Yamaguchi, Y.; Zhao, Y.; Ryan, C.A.; Berkowitz, G.A. Ca2+ signaling by plant Arabidopsis thaliana PEP peptides depends on AtPEPR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc. Natl. Acad. Sci. USA 2010, 107, 21193–21198.
Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 1999, 121, 753–761, doi:10.1104/pp.121.3.753.
[105]
Walker, R.K.; Berkowitz, G.A. Detection of reactive oxygen species downstream of cyclic nucleotide signals in plants. Methods Mol. Biol. 2013, 1016, 245–252, doi:10.1007/978-1-62703-441-8_17.
[106]
Furuichi, T.; Cunningham, K.W.; Muto, S. A putative two pore channel attpc1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol. 2001, 42, 900–905, doi:10.1093/pcp/pce145.
[107]
Islam, M.M.; Munemasa, S.; Hossain, M.A.; Nakamura, Y.; Mori, I.C.; Murata, Y. Roles of attpc1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol. 2010, 51, 302–311, doi:10.1093/pcp/pcq001.
[108]
Rienmuller, F.; Beyhl, D.; Lautner, S.; Fromm, J.; Al-Rasheid, K.A.; Ache, P.; Farmer, E.E.; Marten, I.; Hedrich, R. Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. Plant Cell Physiol. 2010, 51, 1548–1554, doi:10.1093/pcp/pcq102.
[109]
Ma, S.-Y.; Wu, W.-H. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol. 2007, 65, 511–518, doi:10.1007/s11103-007-9187-2.
[110]
Mori, I.C.; Murata, Y.; Yang, Y.; Munemasa, S.; Wang, Y.-F.; Andreoli, S.; Tiriac, H.; Alonso, J.M.; Harper, J.F.; Ecker, J.R.; et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol. 2006, 4, e327, doi:10.1371/journal.pbio.0040327.
[111]
Munemasa, S.; Hossain, M.A.; Nakamura, Y.; Mori, I.C.; Murata, Y. The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol. 2011, 155, 553–561, doi:10.1104/pp.110.162750.
[112]
Zhu, S.-Y.; Yu, X.-C.; Wang, X.-J.; Zhao, R.; Li, Y.; Fan, R.-C.; Shang, Y.; Du, S.-Y.; Wang, X.-F.; Wu, F.-Q.; et al. Two calcium-dependent protein kinases, cpk4 and cpk11, regulate abscisic acid signal transduction in arabidopsis. Plant Cell Online 2007, 19, 3019–3036, doi:10.1105/tpc.107.050666.
[113]
Geiger, D.; Scherzer, S.; Mumm, P.; Marten, I.; Ache, P.; Matschi, S.; Liese, A.; Wellmann, C.; Al-Rasheid, K.A.; Grill, E.; et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl. Acad. Sci. USA 2010, 107, 8023–8028, doi:10.1073/pnas.0912030107.
[114]
Geiger, D.; Scherzer, S.; Mumm, P.; Stange, A.; Marten, I.; Bauer, H.; Ache, P.; Matschi, S.; Liese, A.; Al-Rasheid, K.A.; et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. USA 2009, 106, 21425–21430, doi:10.1073/pnas.0912021106.
[115]
Franz, S.; Ehlert, B.; Liese, A.; Kurth, J.; Cazalé, A.-C.; Romeis, T. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol. Plant 2011, 4, 83–96, doi:10.1093/mp/ssq064.
[116]
Cheong, Y.H.; Pandey, G.K.; Grant, J.J.; Batistic, O.; Li, L.; Kim, B.-G.; Lee, S.-C.; Kudla, J.; Luan, S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J. 2007, 52, 223–239, doi:10.1111/j.1365-313X.2007.03236.x.
[117]
Li, J.-H.; Liu, Y.-Q.; Lü, P.; Lin, H.-F.; Bai, Y.; Wang, X.-C.; Chen, Y.-L. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol. 2009, 150, 114–124, doi:10.1104/pp.109.137067.
[118]
Chen, Y.-L.; Huang, R.; Xiao, Y.-M.; Lü, P.; Chen, J.; Wang, X.-C. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol. 2004, 136, 4096–4103, doi:10.1104/pp.104.047837.
[119]
Delk, N.A.; Johnson, K.A.; Chowdhury, N.I.; Braam, J. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 2005, 139, 240–253, doi:10.1104/pp.105.062612.
[120]
Magnan, F.; Ranty, B.; Charpenteau, M.; Sotta, B.; Galaud, J.-P.; Aldon, D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 2008, 56, 575–589, doi:10.1111/j.1365-313X.2008.03622.x.
[121]
Eun, S.O.; Bae, S.H.; Lee, Y. Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abi1-1 mutant Arabidopsis. Planta 2001, 212, 466–469, doi:10.1007/s004250000489.
[122]
Leung, J.; Bouvier-Durand, M.; Morris, P.; Guerrier, D.; Chefdor, F.; Giraudat, J. Arabidopsis ABA response gene ABI1: Features of a calcium-modulated protein phosphatase. Science 1994, 264, 1448–1452.
[123]
Murata, Y.; Pei, Z.-M.; Mori, I.C.; Schroeder, J. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(p)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 2001, 13, 2513–2523.
[124]
Lemichez, E.; Wu, Y.; Sanchez, J.-P.; Mettouchi, A.; Mathur, J.; Chua, N.-H. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 2001, 15, 1808–1816, doi:10.1101/gad.900401.
[125]
Liu, K.; Luan, S. Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 1998, 10, 1957–1970.
[126]
Jiang, K.; Sorefan, K.; Deeks, M.J.; Bevan, M.W.; Hussey, P.J.; Hetherington, A.M. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 2012, 24, 2031–2040, doi:10.1105/tpc.112.096263.
[127]
Zhao, Y.; Zhao, S.; Mao, T.; Qu, X.; Cao, W.; Zhang, L.; Zhang, W.; He, L.; Li, S.; Ren, S.; et al. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. Plant Cell 2011, 23, 2314–2330, doi:10.1105/tpc.111.086546.
[128]
MacRobbie, E.A.C.; Kurup, S. Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol. 2007, 175, 630–640, doi:10.1111/j.1469-8137.2007.02131.x.
[129]
Brewbaker, J.L.; Kwack, B.H. The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 1963, 50, 859–865.
Feijó, J.A.; Malhó, R.; Obermeyer, G. Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 1995, 187, 155–167, doi:10.1007/BF01280244.
[132]
Pierson, E.S.; Miller, D.D.; Callaham, D.A.; Shipley, A.M.; Rivers, B.A.; Cresti, M.; Hepler, P.K. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: Effect of BAPTA-type buffers and hypertonic media. Plant Cell 1994, 6, 1815–1828.
[133]
Malho, R.; Trewavas, A.J. Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 1996, 8, 1935–1949.
[134]
Fan, L.M.; Wu, W.H.; Yang, H.Y. Identification and characterization of the inward K+ channel in the plasma membrane of Brassica pollen protoplasts. Plant Cell Physiol. 1999, 40, 859–865, doi:10.1093/oxfordjournals.pcp.a029615.
[135]
Miller, D.D.; Callaham, D.A.; Gross, D.J.; Hepler, P.K. Free Ca2+ gradient in growing pollen tubes of Lillium. J. Cell Sci. 1992, 101, 7–12.
[136]
Schi?tt, M.; Romanowsky, S.M.; B?kgaard, L.; Jakobsen, M.K.; Palmgren, M.G.; Harper, J.F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc. Natl. Acad. Sci. USA 2004, 101, 9502–9507.
[137]
Jaffe, L.A.; Weisenseel, M.H.; Jaffe, L.F. Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol. 1975, 67, 488–492, doi:10.1083/jcb.67.2.488.
[138]
Malhó, R.; Feijó, J.A.; Pais, M.S.S. Effect of electrical fields and external ionic currents on pollen-tube orientation. Sex. Plant Reprod. 1992, 5, 57–63, doi:10.1007/BF00714558.
[139]
Malho, R.; Read, N.D.; Trewavas, A.J.; Pais, M.S. Calcium channel activity during pollen tube growth and reorientation. Plant Cell 1995, 7, 1173–1184.
[140]
Kühtreiber, W.M.; Jaffe, L.F. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J. Cell Biol. 1990, 110, 1565–1573, doi:10.1083/jcb.110.5.1565.
[141]
Wu, X.; Chen, T.; Zheng, M.; Chen, Y.; Teng, N.; Samaj, J.; Baluska, F.; Lin, J. Integrative proteomic and cytological analysis of the effects of extracellular Ca2+ influx on Pinus bungeana pollen tube development. J. Proteome Res. 2008, 7, 4299–4312, doi:10.1021/pr800241u.
[142]
Dutta, R.; Robinson, K.R. Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol. 2004, 135, 1398–1406, doi:10.1104/pp.104.041483.
[143]
Shang, Z.-L.; Ma, L.-G.; Zhang, H.-L.; He, R.-R.; Wang, X.-C.; Cui, S.-J.; Sun, D.-Y. Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular cam. Plant Cell Physiol. 2005, 46, 598–608, doi:10.1093/pcp/pci063.
[144]
Qu, H.Y.; Shang, Z.L.; Zhang, S.L.; Liu, L.M.; Wu, J.Y. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytol. 2007, 174, 524–536, doi:10.1111/j.1469-8137.2007.02069.x.
Frietsch, S.; Wang, Y.-F.; Sladek, C.; Poulsen, L.R.; Romanowsky, S.M.; Schroeder, J.I.; Harper, J.F. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 2007, 104, 14531–14536, doi:10.1073/pnas.0701781104.
[147]
Moutinho, A.; Love, J.; Trewavas, A.J.; Malhó, R. Distribution of calmodulin protein and mRNA in growing pollen tubes. Sex. Plant Reprod. 1998, 11, 131–139, doi:10.1007/s004970050130.
[148]
Yoon, G.M.; Dowd, P.E.; Gilroy, S.; McCubbin, A.G. Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 2006, 18, 867–878, doi:10.1105/tpc.105.037135.
[149]
Myers, C.; Romanowsky, S.M.; Barron, Y.D.; Garg, S.; Azuse, C.L.; Curran, A.; Davis, R.M.; Hatton, J.; Harmon, A.C.; Harper, J.F. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J. 2009, 59, 528–539, doi:10.1111/j.1365-313X.2009.03894.x.
[150]
Franke, W.; Herth, W.; VanDerWoude, W.; Morré, D.J. Tubular and filamentous structures in pollen tubes: Possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 1972, 105, 317–341, doi:10.1007/BF00386769.
[151]
Mascarenhas, J.P.; Lafountain, J. Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell 1972, 4, 11–14, doi:10.1016/S0040-8166(72)80002-8.
[152]
Lovy-Wheeler, A.; Wilsen, K.; Baskin, T.; Hepler, P. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 2005, 221, 95–104, doi:10.1007/s00425-004-1423-2.
[153]
Gebert, M.; Dresselhaus, T.; Sprunck, S. F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specific armadillo repeat protein ARO1. Plant Cell 2008, 20, 2798–2814, doi:10.1105/tpc.108.061028.
[154]
Zhang, Y.; Xiao, Y.; Du, F.; Cao, L.; Dong, H.; Ren, H. Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol. 2011, 190, 667–682, doi:10.1111/j.1469-8137.2010.03632.x.
[155]
Zhu, L.; Zhang, Y.; Kang, E.; Xu, Q.; Wang, M.; Rui, Y.; Liu, B.; Yuan, M.; Fu, Y. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating f-actin organization. Plant Cell 2013, 25, 851–867, doi:10.1105/tpc.113.110528.
[156]
Nakayasu, T.; Yokota, E.; Shimmen, T. Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem. Biophys. Res. Commun. 1998, 249, 61–65, doi:10.1006/bbrc.1998.9088.
[157]
Yokota, E.; Muto, S.; Shimmen, T. Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol. 1999, 119, 231–240, doi:10.1104/pp.119.1.231.
[158]
Yokota, E.; Muto, S.; Shimmen, T. Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-bundling protein isolated from lily pollen tubes. Plant Physiol. 2000, 123, 645–654, doi:10.1104/pp.123.2.645.
[159]
Yokota, E.; Takahara, K.-I.; Shimmen, T. Actin-bundling protein isolated from pollen tube of lily. Biochemical and immunocytochemical characterization. Plant Physiol. 1998, 116, 1421–1429, doi:10.1104/pp.116.4.1421.
[160]
Yokota, E.; Shimmen, T. The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 1999, 209, 264–266, doi:10.1007/s004250050631.
[161]
Yokota, E.; Tominaga, M.; Mabuchi, I.; Tsuji, Y.; Staiger, C.J.; Oiwa, K.; Shimmen, T. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner. Plant Cell Physiol. 2005, 46, 1690–1703, doi:10.1093/pcp/pci185.
[162]
Vidali, L.; Burkart, G.M.; Augustine, R.C.; Kerdavid, E.; Tüzel, E.; Bezanilla, M. Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 2010, 22, 1868–1882, doi:10.1105/tpc.109.073288.
[163]
Qu, X.; Zhang, H.; Xie, Y.; Wang, J.; Chen, N.; Huang, S. Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 2013, 25, 1803–1817, doi:10.1105/tpc.113.110940.
[164]
Wang, Y.; Chen, T.; Zhang, C.; Hao, H.; Liu, P.; Zheng, M.; Baluska, F.; Samaj, J.; Lin, J. Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes. New Phytol. 2009, 182, 851–862, doi:10.1111/j.1469-8137.2009.02820.x.
[165]
Putnam-Evans, C.; Harmon, A.C.; Palevitz, B.A.; Fechheimer, M.; Cormier, M.J. Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil. Cytoskeleton 1989, 12, 12–22, doi:10.1002/cm.970120103.
[166]
Montalbetti, N.; Li, Q.; Timpanaro, G.A.; González-Perrett, S.; Dai, X.-Q.; Chen, X.-Z.; Cantiello, H.F. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: Role of gelsolin. J. Physiol. 2005, 566, 309–325, doi:10.1113/jphysiol.2005.087072.
[167]
Lader, A.S.; Kwiatkowski, D.J.; Cantiello, H.F. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am. J. Physiol. Cell Physiol. 1999, 277, C1277–C1283.
[168]
Su, H.; Wang, T.; Dong, H.; Ren, H. The villin/gelsolin/fragmin superfamily proteins in plants. J. Integr. Plant Biol. 2007, 49, 1183–1191, doi:10.1111/j.1672-9072.2007.00546.x.
[169]
Tao, Z.; Ren, H. Regulation of gelsolin to plant actin filaments and its distribution in pollen. Sci. China C Life Sci. 2003, 46, 379–388, doi:10.1360/02yc0109.