The vacuole is by far the largest intracellular Ca 2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca 2+ release and Ca 2+ uptake is summarized, and how different vacuolar Ca 2+ channels and Ca 2+ pumps may contribute to Ca 2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca 2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca 2+ channels that could elicit cytosolic [Ca 2+] transients. Typical second messengers, such as InsP 3 and cADPR, seem to trigger vacuolar Ca 2+ release, but the molecular mechanism of this Ca 2+ release still awaits elucidation. Some vacuolar Ca 2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca 2+ signaling still has to be demonstrated. Ca 2+ pumps in addition to establishing long-term Ca 2+ homeostasis can shape cytosolic [Ca 2+] transients by limiting their amplitude and duration, and may thus affect Ca 2+ signaling.
References
[1]
Felle, H. Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: Interaction of Ca2+ and pH? Planta 1988, 176, 248–255, doi:10.1007/BF00392452.
[2]
Bethmann, B.; Thaler, M.; Simonis, W.; Sch?nknecht, G. Electrochemical potential gradients of H+, K+, Ca2+, and Cl? across the tonoplast of the green alga Eremosphaera viridis. Plant Physiol. 1995, 109, 1317–1326.
[3]
Felle, H.H.; Hepler, P.K. The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by Ca2+-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol. 1997, 114, 39–45.
[4]
Plieth, C. Plant calcium signaling and monitoring: Pros and cons and recent experimental approaches. Protoplasma 2001, 218, 1–23, doi:10.1007/BF01288356.
[5]
Perez, V.; Wherrett, T.; Shabala, S.; Muniz, J.; Dobrovinskaya, O.; Pottosin, I. Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J. Exp. Bot. 2008, 59, 3845–3855, doi:10.1093/jxb/ern225.
[6]
Conn, S.; Gilliham, M. Comparative physiology of elemental distributions in plants. Ann. Bot. 2010, 105, 1081–1102, doi:10.1093/aob/mcq027.
[7]
Pottosin, I.I.; Martínez-Estévez, M.; Dobrovinskaya, O.R.; Mu?iz, J.; Sch?nknecht, G. Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels. Planta 2004, 219, 1057–1070, doi:10.1007/s00425-004-1293-7.
[8]
Dadacz-Narloch, B.; Beyhl, D.; Larisch, C.; López-Sanjurjo, E.J.; Reski, R.; Kuchitsu, K.; Müller, T.D.; Becker, D.; Sch?nknecht, G.; Hedrich, R. A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 2011, 23, 2696–2707, doi:10.1105/tpc.111.086751.
[9]
Walker, D.J.; Leigh, R.A.; Miller, A.J. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 1996, 93, 10510–10514, doi:10.1073/pnas.93.19.10510.
Taiz, L. The plant vacuole. J. Exp. Biol. 1992, 172, 113–122.
[12]
Martinoia, E.; Meyer, S.; de Angeli, A.; Nagy, R. Vacuolar transporters in their physiological context. Annu. Rev. Plant Biol. 2012, 63, 183–213, doi:10.1146/annurev-arplant-042811-105608.
[13]
Hedrich, R. Ion channels in plants. Physiol. Rev. 2012, 92, 1777–1811, doi:10.1152/physrev.00038.2011.
[14]
Isayenkov, S.; Isner, J.C.; Maathuis, F.J.M. Vacuolar ion channels: Roles in plant nutrition and signalling. FEBS Lett. 2010, 584, 1982–1988, doi:10.1016/j.febslet.2010.02.050.
[15]
Spalding, E.P.; Harper, J.F. The ins and outs of cellular Ca2+ transport. Curr. Opin. Plant Biol. 2011, 14, 715–720, doi:10.1016/j.pbi.2011.08.001.
Bose, J.; Pottosin, I.; Shabala, S.S.; Palmgren, M.G.; Shabala, S. Calcium efflux systems in stress signalling and adaptation in plants. Front. Plant Sci. 2011, doi:10.3389/fpls.2011.00085.
Dodd, A.N.; Kudla, J.; Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol. 2010, 61, 593–620, doi:10.1146/annurev-arplant-070109-104628.
[20]
Stael, S.; Wurzinger, B.; Mair, A.; Mehlmer, N.; Vothknecht, U.C.; Teige, M. Plant organellar calcium signalling: An emerging field. J. Exp. Bot. 2011, 433, 1–9.
[21]
Peiter, E. The plant vacuole: Emitter and receiver of calcium signals. Cell Calcium 2011, 50, 120–128, doi:10.1016/j.ceca.2011.02.002.
Webb, A.A.R.; Larman, M.G.; Montgomery, L.T.; Taylor, J.E.; Hetherington, A.M. The role of calcium in ABA-induced gene expression and stomatal movements. Plant J. 2001, 26, 351–362, doi:10.1046/j.1365-313X.2001.01032.x.
[24]
Gilroy, S.; Fricker, M.D.; Read, N.D.; Trewavas, A.J. Role of calcium in signal transduction of Commelina guard cells. Plant Cell 1991, 3, 333–344.
[25]
McAinsh, M.R.; Brownlee, C.; Hetherington, A.M. Visualizing changes in cytosolic-free calcium during the response of stomatal guard cells to abscisic acid. Plant Cell 1992, 4, 1113–1122.
Grabov, A.; Blatt, M.R. Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl. Acad. Sci. USA 1998, 95, 4778–4783, doi:10.1073/pnas.95.8.4778.
[28]
Knight, H.; Trewavas, A.J.; Knight, M.R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 1996, 8, 489–503.
[29]
Knight, H.; Trewavas, A.J.; Knight, M.R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 1997, 12, 1067–1078.
Krinke, O.; Novotna, Z.; Valentova, O.; Martinec, J. Inositol trisphosphate receptor in higher plants: is it real? J. Exp. Bot. 2007, 58, 361–376.
[33]
Coté, G.G.; Crain, R.C. Why do plants have phosphoinositides? BioEssays 1994, 16, 39–46, doi:10.1002/bies.950160106.
[34]
Gilroy, S.; Read, N.D.; Trewavas, A.J. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 1990, 346, 769–771, doi:10.1038/346769a0.
[35]
Monteiro, D.; Liu, Q.; Lisboa, S.; Scherer, G.E.F.; Quader, H.; Malhó, R. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J. Exp. Bot. 2005, 56, 1665–1674, doi:10.1093/jxb/eri163.
[36]
Tucker, E.B.; Boss, W.F. Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol. 1996, 111, 459–467.
[37]
Maathuis, F.J. Ligand-gated ion channels. In Membrane Transport in Plants; Blatt, M.R., Ed.; Blackwell Publishing: Oxford, UK, 2004; pp. 193–220.
[38]
Bothwell, J.H.F.; Ng, C.K.-Y. The evolution of Ca2+ signalling in photosynthetic eukaryotes. New Phytol. 2005, 166, 21–38, doi:10.1111/j.1469-8137.2004.01312.x.
[39]
Burki, F.; Okamoto, N.; Pombert, J.-F.; Keeling, P.J. The evolutionary history of haptophytes andcryptophytes: Phylogenomic evidence for separate origins. Proc. Biol. Sci. 2012, 279, 2246–2254, doi:10.1098/rspb.2011.2301.
Saier, M.H., Jr.; Tran, C.V.; Barabote, R.D. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006, 34, D181–D186, doi:10.1093/nar/gkj001.
[42]
Pazour, G.J.; Agrin, N.; Leszyk, J.; Witman, G.B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 2005, 170, 103–113, doi:10.1083/jcb.200504008.
[43]
Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Marechal-Drouard, L.; et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318, 245–250, doi:10.1126/science.1143609.
[44]
Prochnik, S.E.; Umen, J.; Nedelcu, A.M.; Hallmann, A.; Miller, S.M.; Nishii, I.; Ferris, P.; Kuo, A.; Mitros, T.; Fritz-Laylin, L.K.; et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 2010, 329, 223–226, doi:10.1126/science.1188800.
[45]
Kuin, H.; Koerten, H.; Ghijsen, W.E.J.M.; Munnik, T.; van den Ende, H.; Musgrave, A. Chlamydomonas contains calcium stores that are mobilized when phospholipase C is activated. Planta 2000, 210, 286–294, doi:10.1007/PL00008136.
[46]
Wheeler, G.L.; Brownlee, C. Ca2+ signalling in plants and green algae—Changing channels. Trends Plant Sci. 2008, 13, 506–514, doi:10.1016/j.tplants.2008.06.004.
[47]
F?rster, B. Injected inositol 1,4,5-trisphosphate activates Ca2+-sensitive K+ channels in the plasmalemma of Eremosphaera viridis. FEBS Lett. 1990, 269, 197–201, doi:10.1016/0014-5793(90)81153-F.
[48]
Price, D.C.; Chan, C.X.; Yoon, H.S.; Yang, E.C.; Qiu, H.; Weber, A.P.M.; Schwacke, R.; Gross, J.; Blouin, N.A.; Lane, C.; et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 2012, 335, 843–847, doi:10.1126/science.1213561.
[49]
Keeling, P.J.; Palmer, J.D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 2008, 9, 605–618, doi:10.1038/nrg2386.
[50]
Coelho, S.M.; Taylor, A.R.; Ryan, K.P.; Sousa-Pinto, I.; Brown, M.T.; Brownlee, C. Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. Plant Cell 2002, 14, 2369–2381, doi:10.1105/tpc.003285.
[51]
Cock, J.M.; Sterck, L.; Rouze, P.; Scornet, D.; Allen, A.E.; Amoutzias, G.; Anthouard, V.; Artiguenave, F.; Aury, J.M.; Badger, J.H.; et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 2010, 465, 617–621, doi:10.1038/nature09016.
[52]
Schumaker, K.S.; Sze, H. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J. Biol. Chem. 1987, 262, 3944–3946.
[53]
Allen, G.J.; Muir, S.R.; Sanders, D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 1995, 268, 735–737, doi:10.1126/science.7732384.
[54]
Ranjeva, R.; Carrasco, A.; Boudet, A.M. Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells. FEBS Lett. 1988, 230, 137–141, doi:10.1016/0014-5793(88)80657-4.
[55]
Lommel, C.; Felle, H.H. Transport of Ca2+ across the tonoplast of intact vacuoles from Chenopodium album L suspension cells: ATP-dependent import and inositol-1,4,5-trisphosphate-induced release. Planta 1997, 201, 477–486, doi:10.1007/s004250050092.
[56]
Martinec, J.; Feltl, T.; Scanlon, C.H.; Lumsden, P.J.; Machackova, I. Subcellular localization of a high affinity binding site for D-myo-inositol 1,4,5-trisphosphate from Chenopodium rubrum. Plant Physiol. 2000, 124, 475–483, doi:10.1104/pp.124.1.475.
[57]
Muir, S.R.; Sanders, D. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower. Plant Physiol. 1997, 114, 1511–1521.
[58]
Alexandre, J.; Lassalles, J.P.; Kado, R.T. Opening of Ca2+ channels in isolated red beet vacuole membranes by inositol 1,4,5-trisphosphate. Nature 1990, 343, 567–570, doi:10.1038/343567a0.
[59]
Alexandre, J.; Lassalles, J.P. Intracellular Ca2+ release by InsP3 in plants and effect of buffers on Ca2+ diffusion. Phil. Trans. R. Soc. Lond. B 1992, 338, 53–61, doi:10.1098/rstb.1992.0128.
[60]
Allen, G.J.; Sanders, D. Osmotic stress enhances the competence of Beta vulgaris vacuoles to respond to inositol 1,4,5-trisphosphate. Plant J. 1994, 6, 687–695.
Ping, Z.; Yabe, I.; Muto, S. Identification of K+, Cl?, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures. Protoplasma 1992, 171, 7–18, doi:10.1007/BF01379275.
[63]
Gelli, A.; Blumwald, E. Calcium retrieval from vacuolar pools. Characterization of a vacuolar calcium channel. Plant Physiol. 1993, 102, 1139–1146.
[64]
Pottosin, I.; Wherrett, T.; Shabala, S. SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett. 2009, 583, 921–926, doi:10.1016/j.febslet.2009.02.009.
[65]
Lemtiri-Chlieh, F.; MacRobbie, E.A.; Brearley, C.A. Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc. Natl. Acad. Sci. USA 2000, 97, 8687–8692, doi:10.1073/pnas.140217497.
[66]
Lemtiri-Chlieh, F.; MacRobbie, E.A.C.; Webb, A.A.R.; Manison, N.F.; Brownlee, C.; Skepper, J.N.; Chen, J.; Prestwich, G.D.; Brearley, C.A. Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc. Natl. Acad. Sci. USA 2003, 100, 10091–10095, doi:10.1073/pnas.1133289100.
[67]
Guse, A.H. Biochemistry, biology, and pharmacology of cyclic adenosine diphosphoribose (cADPR). Curr. Med. Chem. 2004, 11, 847–855, doi:10.2174/0929867043455602.
[68]
Clapper, D.L.; Walseth, T.F.; Dargie, P.J.; Lee, H.C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 1987, 262, 9561–9568.
Galione, A.; Chuang, K.-T. Pyridine nucleotide metabolites and calcium release from intracellular stores. In Calcium Signaling; Islam, M.S., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 740, pp. 305–323.
[71]
Venturi, E.; Pitt, S.; Galfré, E.; Sitsapesan, R. From eggs to hearts: What is the link between cyclic ADP-ribose and ryanodine receptors? Cardiovasc. Ther. 2012, 30, 109–116, doi:10.1111/j.1755-5922.2010.00236.x.
[72]
Copello, J.A.; Qi, Y.; Jeyakumar, L.H.; Ogunbunmi, E.; Fleischer, S. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium 2001, 30, 269–284, doi:10.1054/ceca.2001.0235.
[73]
Fruen, B.R.; Mickelson, J.R.; Shomer, N.H.; Velez, P.; Louis, C.F. Cyclic ADP-ribose does not affect cardiac or skeletal muscle ryanodine receptors. FEBS Lett. 1994, 352, 123–126, doi:10.1016/0014-5793(94)00931-7.
[74]
Lukyanenko, V.; Gy?rke, I.; Wiesner, T.F.; Gy?rke, S. Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ. Res. 2001, 89, 614–622, doi:10.1161/hh1901.098066.
[75]
Zheng, J.; Wenzhi, B.; Miao, L.; Hao, Y.; Zhang, X.; Yin, W.; Pan, J.; Yuan, Z.; Song, B.; Ji, G. Ca2+ release induced by cADP-ribose is mediated by FKBP12.6 proteins in mouse bladder smooth muscle. Cell Calcium 2010, 47, 449–457, doi:10.1016/j.ceca.2010.03.006.
[76]
Muir, S.R.; Sanders, D. Pharmacology of Ca2+ release from red beet microsomes suggests the presence of ryanodine receptor homologs in higher plants. FEBS Lett. 1996, 395, 39–42, doi:10.1016/0014-5793(96)01000-9.
[77]
Moyen, C.; Hammond-Kosack, K.E.; Jones, J.; Knight, M.R.; Johannes, E. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant Cell Environ. 1998, 21, 1101–1111, doi:10.1046/j.1365-3040.1998.00378.x.
Leckie, C.P.; McAinsh, M.R.; Allen, G.J.; Sanders, D.; Hetherington, A.M. Abscisic acid-inducedstomatal closure mediated by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 1998, 95, 15837–15842.
[84]
Sanchez, J.P.; Duque, P.; Chua, N.H. ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J. 2004, 38, 381–395, doi:10.1111/j.1365-313X.2004.02055.x.
[85]
MacRobbie, E.A.C. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proc. Natl. Acad. Sci. USA 2000, 97, 12361–12368, doi:10.1073/pnas.220417197.
[86]
Bauer, C.S.; Plieth, C.; Bethmann, B.; Popescu, O.; Hansen, U.-P.; Simonis, W.; Sch?nknecht, G. Strontium-induced repetitive calcium spikes in a unicellular green alga. Plant Physiol. 1998, 117, 545–557, doi:10.1104/pp.117.2.545.
[87]
Bauer, C.S.; Simonis, W.; Sch?nknecht, G. Different xanthines cause membrane potential oscillations in a unicellular green alga pointing to a ryanodine/cADPR receptor Ca2+ channel. Plant Cell Physiol. 1999, 40, 453–456, doi:10.1093/oxfordjournals.pcp.a029563.
[88]
Mackrill, J.J. Ryanodine receptor calcium release channels: An evolutionary perspective. In Calcium Signaling; Islam, M.S., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 740, pp. 159–182.
[89]
Navazio, L.; Mariani, P.; Sanders, D. Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets. Plant Physiol. 2001, 125, 2129–2138, doi:10.1104/pp.125.4.2129.
[90]
Hedrich, R.; Flügge, U.-I.; Fernandez, J.M. Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Lett. 1986, 204, 228–232, doi:10.1016/0014-5793(86)80817-1.
[91]
Hedrich, R.; Neher, E. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 1987, 329, 833–835, doi:10.1038/329833a0.
[92]
Colombo, R.; Cerana, R.; Lado, P.; Peres, A. Voltage-dependent channels permeable to K+ and Na+ in the membrane of Acer pseudoplantanus vacuoles. J. Membr. Biol. 1988, 103, 227–236, doi:10.1007/BF01993982.
[93]
Hedrich, R.; Barbier-Brygoo, H.; Felle, H.; Flügge, U.-I.; Lüttge, U.; Maathuis, F.J.M.; Marx, S.; Prins, H.B.A.; Raschke, K.; Schnabl, H.; et al. General mechanisms for solute transport across the tonoplast of plant vacuoles: A patch-clamp survey of ion channels and proton pumps. Bot. Acta 1988, 101, 7–13.
[94]
Peiter, E.; Maathuis, F.J.M.; Mills, L.N.; Knight, H.; Pelloux, J.; Hetherington, A.M.; Sanders, D. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 2005, 434, 404–408, doi:10.1038/nature03381.
[95]
Hedrich, R.; Marten, I. TPC1—SV channels gain shape. Mol. Plant 2011, 4, 428–441, doi:10.1093/mp/ssr017.
[96]
Ward, J.M.; Schroeder, J.I. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 1994, 6, 669–683.
[97]
Pantoja, O.; Gelli, A.; Blumwald, E. Voltage-dependent calcium channels in plant vacuoles. Science 1992, 255, 1567–1570.
[98]
Pottosin, I.I.; Sch?nknecht, G. Vacuolar calcium channels. J. Exp. Bot. 2007, 58, 1559–1569, doi:10.1093/jxb/erm035.
[99]
Johannes, E.; Sanders, D. The voltage-gated Ca2+ release channel in the vacuolar membrane of sugar beet resides in two activity states. FEBS Lett. 1995, 365, 1–6, doi:10.1016/0014-5793(95)00424-8.
[100]
Johannes, E.; Sanders, D. Lumenal calcium modulates unitary conductance and gating of a plant vacuolar calcium release channel. J. Membr. Biol. 1995, 146, 211–224.
[101]
Allen, G.J.; Sanders, D. Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 1995, 7, 1473–1483.
[102]
Pottosin, I.I.; Dobrovinskaya, O.R.; Muniz, J. Conduction of monovalent and divalent cations in the slow vacuolar channel. J. Membr. Biol. 2001, 181, 55–65.
[103]
Pottosin, I.I.; Tikhonova, L.I.; Hedrich, R.; Sch?nknecht, G. Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release. Plant J. 1997, 12, 1387–1398.
[104]
Bewell, M.A.; Maathuis, F.J.M.; Allen, G.J.; Sanders, D. Calcium-induced calcium release mediated by a voltage-activated cation channel in vacuolar vesicles from red beet. FEBS Lett. 1999, 458, 41–44, doi:10.1016/S0014-5793(99)01109-6.
[105]
Pei, Z.M.; Ward, J.M.; Schroeder, J.I. Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol. 1999, 121, 977–986, doi:10.1104/pp.121.3.977.
[106]
Carpaneto, A.; Cantu, A.M.; Gambale, F. Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris. Planta 2001, 213, 457–468, doi:10.1007/s004250100519.
[107]
Ivashikina, N.; Hedrich, R. K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J. 2005, 41, 606–614, doi:10.1111/j.1365-313X.2004.02324.x.
[108]
Carpaneto, A.; Cantu, A.M.; Gambale, F. Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett. 1999, 442, 129–132, doi:10.1016/S0014-5793(98)01642-1.
[109]
Gradogna, A.; Scholz-Starke, J.; Gutla, P.V.K.; Carpaneto, A. Fluorescence combined with excised patch: Measuring calcium currents in plant cation channels. Plant J. 2009, 58, 175–182, doi:10.1111/j.1365-313X.2008.03762.x.
[110]
Gambale, F.; Bregante, M.; Stragapede, F.; Cantu, A.M. Ionic channels of the sugar beet tonoplast are regulated by a multi-ion single-file permeation mechanism. J. Membr. Biol. 1996, 154, 69–79, doi:10.1007/s002329900133.
[111]
Banks, J.A.; Nishiyama, T.; Hasebe, M.; Bowman, J.L.; Gribskov, M.; dePamphilis, C.; Albert, V.A.; Aono, N.; Aoyama, T.; Ambrose, B.A.; et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 2011, 332, 960–963, doi:10.1126/science.1203810.
[112]
Linz, K.W.; K?hler, K. Vacuolar ion currents in the primitive green alga Eremosphaera viridis: The electrical properties are suggestive of both the Characeae and higher plants. Protoplasma 1994, 179, 34–45, doi:10.1007/BF01360735.
[113]
Blanc, G.; Agarkova, I.; Grimwood, J.; Kuo, A.; Brueggeman, A.; Dunigan, D.; Gurnon, J.; Ladunga, I.; Lindquist, E.; Lucas, S.; et al. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 2012, 13, R39, doi:10.1186/gb-2012-13-5-r39.
[114]
Blanc, G.; Duncan, G.; Agarkova, I.; Borodovsky, M.; Gurnon, J.; Kuo, A.; Lindquist, E.; Lucas, S.; Pangilinan, J.; Polle, J.; et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010, 22, 2943–2955, doi:10.1105/tpc.110.076406.
[115]
Collén, J.; Porcel, B.; Carré, W.; Ball, S.G.; Chaparro, C.; Tonon, T.; Barbeyron, T.; Michel, G.; Noel, B.; Valentin, K.; et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. USA 2013, 110, 5247–5252, doi:10.1073/pnas.1221259110.
[116]
Nakamura, Y.; Sasaki, N.; Kobayashi, M.; Ojima, N.; Yasuike, M.; Shigenobu, Y.; Satomi, M.; Fukuma, Y.; Shiwaku, K.; Tsujimoto, A.; et al. The first symbiont-free genome sequence of marine red alga, Susabi-nori Pyropia yezoensis. PLoS One 2013, 8, e57122, doi:10.1371/journal.pone.0057122.
[117]
Ishibashi, K.; Suzuki, M.; Imai, M. Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem. Biophys. Res. Commun. 2000, 270, 370–376, doi:10.1006/bbrc.2000.2435.
[118]
Calcraft, P.J.; Ruas, M.; Pan, Z.; Cheng, X.; Arredouani, A.; Hao, X.; Tang, J.; Rietdorf, K.; Teboul, L.; Chuang, K.T.; et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 2009, 459, 596–600, doi:10.1038/nature08030.
[119]
Rybalchenko, V.; Ahuja, M.; Coblentz, J.; Churamani, D.; Patel, S.; Kiselyov, K.; Muallem, S. Membrane potential regulates nicotinic acid adenine dinucleotide phosphate (NAADP) dependence of the pH- and Ca2+-sensitive organellar two-pore channel TPC1. J. Biol. Chem. 2012, 287, 20407–20416.
[120]
Zhu, M.X.; Ma, J.; Parrington, J.; Galione, A.; Mark Evans, A. TPCs: Endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett. 2010, 584, 1966–1974, doi:10.1016/j.febslet.2010.02.028.
[121]
Lee, H.C. A unified mechanism of enzymatic synthesis of two calcium messengers: Cyclic ADP-ribose and NAADP. Biol. Chem. 1999, 380, 785–793.
[122]
Lee, H.C.; Aarhus, R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem. 1995, 270, 2152–2157, doi:10.1074/jbc.270.5.2152.
[123]
Genazzani, A.A.; Galione, A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem. J. 1996, 315, 721–725.
[124]
Chini, E.N.; Dousa, T.P. Nicotinate-adenine dinucleotide phosphate-induced Ca2+-release does not behave as a Ca2+-induced Ca2+-release system. Biochem. J. 1996, 316, 709–711.
[125]
Cancela, J.M.; Churchill, G.C.; Galione, A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 1999, 398, 74–76, doi:10.1038/18032.
[126]
Wang, X.; Zhang, X.; Dong, X.-P.; Samie, M.; Li, X.; Cheng, X.; Goschka, A.; Shen, D.; Zhou, Y.; Harlow, J.; et al. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 2012, 151, 372–383, doi:10.1016/j.cell.2012.08.036.
Navazio, L.; Bewell, M.A.; Siddiqua, A.; Dickinson, G.D.; Galione, A.; Sanders, D. Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc. Natl. Acad. Sci. USA 2000, 97, 8693–8698.
[129]
Islam, M.M.; Munemasa, S.; Hossain, M.A.; Nakamura, Y.; Mori, I.C.; Murata, Y. Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol. 2010, 51, 302–311, doi:10.1093/pcp/pcq001.
[130]
Ranf, S.; Wunnenberg, P.; Lee, J.; Becker, D.; Dunkel, M.; Hedrich, R.; Scheel, D.; Dietrich, P. Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J. 2008, 53, 287–299.
[131]
Bonaventure, G.; Gfeller, A.; Proebsting, W.M.; Hortensteiner, S.; Chetelat, A.; Martinoia, E.; Farmer, E.E. A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J. 2007, 49, 889–898, doi:10.1111/j.1365-313X.2006.03002.x.
[132]
Beyhl, D.; H?rtensteiner, S.; Martinoia, E.; Farmer, E.E.; Fromm, J.; Marten, I.; Hedrich, R. The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. Plant J. 2009, 58, 715–723, doi:10.1111/j.1365-313X.2009.03820.x.
[133]
Bonaventure, G.; Gfeller, A.; Rodriguez, V.M.; Armand, F.; Farmer, E.E. The fou2 gain-of-function allele and the wild-type allele of Two Pore Channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. Plant Cell Physiol. 2007, 48, 1775–1789, doi:10.1093/pcp/pcm151.
[134]
Armengaud, P.; Breitling, R.; Amtmann, A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 2004, 136, 2556–2576, doi:10.1104/pp.104.046482.
[135]
Gilliham, M.; Athman, A.; Tyerman, S.D.; Conn, S.J. Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity—Another role for TPC1? Plant Signal. Behav. 2011, 6, 1656–1661, doi:10.4161/psb.6.11.17797.
[136]
Conn, S.J.; Berninger, P.; Broadley, M.R.; Gilliham, M. Exploiting natural variation to uncover candidate genes that control element accumulation in Arabidopsis thaliana. New Phytol. 2012, 193, 859–866, doi:10.1111/j.1469-8137.2011.03977.x.
[137]
Furuichi, T.; Mori, I.C.; Takahashi, K.; Muto, S. Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol. 2001, 42, 1149–1155, doi:10.1093/pcp/pce150.
[138]
Furuichi, T.; Cunningham, K.W.; Muto, S. A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol. 2001, 42, 900–905, doi:10.1093/pcp/pce145.
[139]
Kadota, Y.; Furuichi, T.; Ogasawara, Y.; Goh, T.; Higashi, K.; Muto, S.; Kuchitsu, K. Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochem. Biophys. Res. Commun. 2004, 317, 823–830, doi:10.1016/j.bbrc.2004.03.114.
[140]
Hamada, H.; Kurusu, T.; Okuma, E.; Nokajima, H.; Kiyoduka, M.; Koyano, T.; Sugiyama, Y.; Okada, K.; Koga, J.; Saji, H.; et al. Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J. Biol. Chem. 2012, 287, 9931–9939, doi:10.1074/jbc.M111.337659.
[141]
Kurusu, T.; Yagala, T.; Miyao, A.; Hirochika, H.; Kuchitsu, K. Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J. 2005, 42, 798–809, doi:10.1111/j.1365-313X.2005.02415.x.
[142]
Larisch, N.; Schulze, C.; Galione, A.; Dietrich, P. An N-terminal dileucine motif directs two-pore channels to the tonoplast of plant cells. Traffic 2012, 13, 1012–1022, doi:10.1111/j.1600-0854.2012.01366.x.
[143]
Amodeo, G.; Escobar, A.; Zeiger, E. A cationic channel in the guard cell tonoplast of Allium cepa. Plant Physiol. 1994, 105, 999–1006.
[144]
Carpaneto, A.; Cantu, A.M.; Busch, H.; Gambale, F. Ion channels in the vacuoles of the seagrass Posidonia oceanica. FEBS Lett. 1997, 412, 236–240, doi:10.1016/S0014-5793(97)00786-2.
[145]
Wherrett, T.; Shabala, S.; Pottosin, I. Different properties of SV channels in root vacuoles from near isogenic Al-tolerant and Al-sensitive wheat cultivars. FEBS Lett. 2005, 579, 6890–6894, doi:10.1016/j.febslet.2005.11.038.
[146]
Hashimoto, K.; Saito, M.; Hidetoshi, I.; Matsuoka, H. Evidence for the plasma membrane localization of a putative voltage-dependent Ca2+ channel, OsTPC1, in rice. Plant Biotechnol. 2005, 22, 235–239, doi:10.5511/plantbiotechnology.22.235.
[147]
Dadacz-Narloch, B.; Kimura, S.; Kurusu, T.; Farmer, E.E.; Becker, D.; Kuchitsu, K.; Hedrich, R. On the cellular site of two-pore channel TPC1 action in the Poaceae. New Phytol. 2013, doi:10.1111/nph.12402.
[148]
Chen, Z.-H.; Hills, A.; B?tz, U.; Amtmann, A.; Lew, V.L.; Blatt, M.R. Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol. 2012, 159, 1235–1251, doi:10.1104/pp.112.197350.
[149]
Hills, A.; Chen, Z.-H.; Amtmann, A.; Blatt, M.R.; Lew, V.L. OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol. 2012, 159, 1026–1042, doi:10.1104/pp.112.197244.
[150]
Yuen, C.C.Y.; Christopher, D.A. The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AoB Plants 2013, 5, plt012, doi:10.1093/aobpla/plt012.
[151]
Fischer, C.; Kugler, A.; Hoth, S.; Dietrich, P. An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant Cell Physiol. 2013, 54, 573–584, doi:10.1093/pcp/pct021.
[152]
Dietrich, P.; Anschütz, U.; Kugler, A.; Becker, D. Physiology and biophysics of plant ligand-gated ion channels. Plant Biol. 2010, 12, 80–93, doi:10.1111/j.1438-8677.2010.00362.x.
[153]
Chin, K.; Moeder, W.; Yoshioka, K. Biological roles of cyclic-nucleotide-gated ion channels in plants: What we know and dont know about this 20 member ion channel family. Botany 2009, 87, 668–677, doi:10.1139/B08-147.
[154]
Zelman, A.K.; Dawe, A.; Berkowitz, G.A.; Gehring, C. Evolutionary and structural perspectives of plant cyclic nucleotide gated cation channels. Front. Plant Sci. 2012, doi:10.3389/fpls.2012.00095.
[155]
Kugler, A.; Kohler, B.; Palme, K.; Wolff, P.; Dietrich, P. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol. 2009, 9, 140.
[156]
Quiles-Pando, C.; Rexach, J.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; González-Fontes, A. Boron deficiency increases the levels of cytosolic Ca2+ and expression of Ca2+-related genes in Arabidopsis thaliana roots. Plant Physiol. Biochem. 2013, 65, 55–60, doi:10.1016/j.plaphy.2013.01.004.
[157]
Palmer, C.P.; Zhou, X.L.; Lin, J.; Loukin, S.H.; Kung, C.; Saimi, Y. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane. Proc. Natl. Acad. Sci. USA 2001, 98, 7801–7805.
Tracy, F.E.; Gilliham, M.; Dodd, A.N.; Webb, A.A.R.; Tester, M. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ. 2008, 31, 1063–1073, doi:10.1111/j.1365-3040.2008.01817.x.
[163]
Allen, G.J.; Chu, S.P.; Harrington, C.L.; Schumacher, K.; Hoffmann, T.; Tang, Y.Y.; Grill, E.; Schroeder, J.I. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 2001, 411, 1053–1057, doi:10.1038/35082575.
[164]
Bonza, M.C.; de Michelis, M.I. The plant Ca2+-ATPase repertoire: Biochemical features and physiological functions. Plant Biol. 2011, 13, 421–430, doi:10.1111/j.1438-8677.2010.00405.x.
[165]
Huda, K.M.K.; Banu, M.S.A.; Tuteja, R.; Tuteja, N. Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling. J. Exp. Bot. 2013, 64, 3099–3109, doi:10.1093/jxb/ert182.
Geisler, M.; Frangne, N.; Gomes, E.; Martinoia, E.; Palmgren, M.G. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 2000, 124, 1814–1827, doi:10.1104/pp.124.4.1814.
[168]
Lee, S.M.; Kim, H.S.; Han, H.J.; Moon, B.C.; Kim, C.Y.; Harper, J.F.; Chung, W.S. Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 2007, 581, 3943–3949, doi:10.1016/j.febslet.2007.07.023.
[169]
Boursiac, Y.; Lee, S.M.; Romanowsky, S.; Blank, R.; Sladek, C.; Chung, W.S.; Harper, J.F. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol. 2010, 154, 1158–1171, doi:10.1104/pp.110.159038.
[170]
Qudeimat, E.; Faltusz, A.M.C.; Wheeler, G.; Lang, D.; Brownlee, C.; Reski, R.; Frank, W. A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc. Natl. Acad. Sci. USA 2008, 105, 19555–19560.
[171]
Zhu, X.; Caplan, J.; Mamillapalli, P.; Czymmek, K.; Dinesh-Kumar, S.P. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J. 2010, 29, 1007–1018, doi:10.1038/emboj.2009.402.
[172]
Pittman, J. Multiple transport pathways for mediating intracellular pH homeostasis: The contribution of H+/ion exchangers. Front. Plant Sci. 2012, 3, 11, doi:10.3389/fpls.2012.00011.
[173]
Emery, L.; Whelan, S.; Hirschi, K.D.; Pittman, J.K. Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants. Front. Plant Sci. 2012, 3, 1–19.
Cheng, N.-H.; Pittman, J.K.; Shigaki, T.; Lachmansingh, J.; LeClere, S.; Lahner, B.; Salt, D.E.; Hirschi, K.D. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol. 2005, 138, 2048–2060, doi:10.1104/pp.105.061218.
[176]
Connorton, J.M.; Webster, R.E.; Cheng, N.; Pittman, J.K. Knockout of multiple Arabidopsis cation/H+ exchangers suggests isoform-specific roles in metal stress response, germination and seed mineral nutrition. PLoS One 2012, 7, e47455.
[177]
Conn, S.J.; Gilliham, M.; Athman, A.; Schreiber, A.W.; Baumann, U.; Moller, I.; Cheng, N.-H.; Stancombe, M.A.; Hirschi, K.D.; Webb, A.A.R.; et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 2011, 23, 240–257, doi:10.1105/tpc.109.072769.
[178]
Cho, D.; Villiers, F.; Kroniewicz, L.; Lee, S.; Seo, Y.J.; Hirschi, K.D.; Leonhardt, N.; Kwak, J.M. Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol. 2012, 160, 1293–1302, doi:10.1104/pp.112.201442.
[179]
Xu, L.; Zahid, K.R.; He, L.; Zhang, W.; He, X.; Zhang, X.; Yang, X.; Zhu, L. GhCAX3 Gene, a novel Ca2+/H+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction. PLoS One 2013, 8, e66303.
[180]
Zhao, J.; Barkla, B.; Marshall, J.; Pittman, J.; Hirschi, K. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 2008, 227, 659–669, doi:10.1007/s00425-007-0648-2.