Efforts to take advantage of the beneficial activities of thyrotropin-releasing hormone (TRH) in the brain are hampered by its poor metabolic stability and lack of adequate central nervous system bioavailability. We report here novel and metabolically stable analogs that we derived from TRH by replacing its amino-terminal pyroglutamyl (pGlu) residue with pyridinium-containing moieties. Exploratory studies have shown that the resultant compounds were successfully delivered into the mouse brain after systemic administration via their bioprecursor prodrugs, where they manifested neuropharmacological responses characteristic of the endogenous parent peptide. On the other hand, the loss of potency compared to TRH in a model testing antidepressant-like effect with a simultaneous preservation of analeptic activity has been observed, when pGlu was replaced with trigonelloyl residue. This finding may indicate an opportunity for designing TRH analogs with potential selectivity towards cholinergic effects.
References
[1]
Prokai, L.; Prokai-Tatrai, K.; Ouyang, X.; Kim, H.S.; Wu, W.M.; Zharikova, A.D.; Bodor, N. Metabolism-based brain-targeting system for a thyrotropin-releasing hormone analogue. J. Med. Chem. 1999, 42, 4563–4571.
[2]
Prokai-Tatrai, K.; Perjési, P.; Zharikova, A.D.; Li, X.; Prokai, L. Design, synthesis and biological evaluation of novel, centrally-acting thyrotropin-releasing hormone analogues. Bioorg. Med. Chem. Lett. 2002, 12, 2171–2174.
[3]
Prokai, L.; Prokai-Tatrai, K.; Zharikova, A.D.; Nguyen, V.; Stevens, S.M., Jr. Centrally acting and metabolically stable thyrotropin-releasing hormone analogues by replacement of histidine with substituted pyridinium. J. Med. Chem. 2004, 47, 6025–6033, doi:10.1021/jm020531t.
[4]
Prokai-Tatrai, K.; Prokai, L. Prodrugs of thyrotropin-releasing hormone and related peptides as central nervous system agents. Molecules 2009, 14, 633–654, doi:10.3390/molecules14020633.
[5]
Prokai-Tatrai, K.; Prokai, L. Prodrug design for brain delivery of small- and medium-sized neuropeptides. Methods Mol. Biol. 2011, 789, 313–336, doi:10.1007/978-1-61779-310-3_21.
[6]
Boler, J.; Enzmann, F.; Folkers, K.; Bowers, C.Y.; Schally, A.V. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem. Biophys. Res. Commun. 1969, 37, 705–710, doi:10.1016/0006-291X(69)90868-7.
[7]
Prokai, L. Central nervous system effects of thyrotropin-releasing hormone and its analogues: Opportunities and perspectives for drug discovery and development. Prog. Drug Res. 2002, 59, 134–169.
[8]
Kelly, J.A. Thyrotropin-releasing hormone: Basis and potential for its therapeutic use. Essays Biochem. 1995, 30, 133–149.
[9]
Griffiths, E.C. Thyrotrophin releasing hormone: Endocrine and central effect. Psychoneuroendocrinology 1985, 10, 225–235.
[10]
Monga, V.; Meena, C.L.; Kaur, N.; Jain, R. Chemistry and biology of thyrotropin-releasing hormone (TRH) and its analogs. Curr. Med. Chem. 2008, 15, 2718–2733, doi:10.2174/092986708786242912.
Kelly, J.A.; Slator, G.R.; Tipton, K.F.; Williams, C.H.; Bauer, K. Kinetic investigation of the specificity of porcine brain thyrotropin-releasing hormone-degrading ectoenzyme for thyrotropin-releasing hormone-like peptides. J. Biol. Chem. 2000, 275, 16746–16751.
[13]
Zlokovi?, B.V.; Lipovac, M.N.; Begley, D.J.; Davson, H.; Raki?, L. Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of an in situ perfused guinea pig brain. J. Neurochem. 1988, 51, 252–257.
[14]
Scalabrino, G.A.; Hogan, N.; O’Boyle, K.M.; Slator, G.R.; Gregg, D.J.; Fitchett, C.M.; Draper, S.M.; Bennett, G.W.; Hinkle, P.M.; Bauer, K.; et al. Discovery of a dual action first-in-class peptide that mimics and enhances CNS-mediated actions of thyrotropin-releasing hormone. Neuropharmacology 2007, 52, 1472–1481.
[15]
Szirtes, T.L.; Kisfaludi, L.; Pálosi, E.; Szporny, L. Synthesis of thyrotropin-releasing hormone analogues. 1. Complete dissociation of central nervous system effect from thyrotropin-releasing activity. J. Med. Chem. 1984, 27, 741–745, doi:10.1021/jm00372a006.
[16]
Teixido, M.; Prokai-Tatrai, K.; Wang, X.; Nguyen, V.; Prokai, L. Exploratory neuropharmacological evaluation of a bridged thyrotropin-releasing hormone analogue. Brain Res. Bull. 2007, 73, 103–107, doi:10.1016/j.brainresbull.2007.02.012.
[17]
Begley, D.J.; Brightman, M.W. Structural and functional aspects of the blood-brain barrier. Prog. Drug Res. 2003, 61, 39–78.
[18]
Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005, 2, 3–14, doi:10.1602/neurorx.2.1.3.
[19]
Kastin, A.J.; Pan, W. Peptide transport across the blood-brain barrier. Prog. Drug Res. 2003, 61, 79–100.
[20]
Patel, M.M.; Goyal, B.R.; Bhadada, S.V.; Bhatt, J.S.; Amin, A.F. Getting into the brain: Approaches to enhance brain drug delivery. CNS Drugs 2009, 23, 35–58.
[21]
De Boer, A.G.; Gaillard, P.J. Strategies to improve drug delivery across the blood-brain barrier. Clin. Pharmacokin. 2007, 46, 553–576, doi:10.2165/00003088-200746070-00002.
[22]
Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64, 640–665, doi:10.1016/j.addr.2011.11.010.
[23]
Pavan, B.; Dalpiaz, A.; Ciliberti, N.; Biondi, C.; Manfredini, S.; Vertuani, S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 2008, 13, 1035–1065, doi:10.3390/molecules13051035.
[24]
Avdeef, A. Physicochemical profiling (solubility, permeability and charge state). Curr. Top. Med. Chem. 2001, 1, 277–351, doi:10.2174/1568026013395100.
[25]
Prokai-Tatrai, K.; Prokai, L. Modifying peptide properties by prodrug design for enhanced transport into the CNS. Prog. Drug Res. 2003, 61, 155–188.
[26]
Kokil, G.R.; Rewatkar, P.V. Bioprecursor prodrugs: Molecular modification of the active principle. Mini Rev. Med. Chem. 2010, 10, 1316–1330, doi:10.2174/138955710793564179.
[27]
Rivier, J.; Vale, W.; Monahan, M.; Ling, N.; Burgus, R. Synthetic thyrotropin-releasing factor analogs. 3. Effect of replacement or modification of histidine residue on biological activity. J. Med. Chem. 1972, 15, 479–482, doi:10.1021/jm00275a010.
[28]
Prokai, L.; Prokai-Tatrai, K.; Bodor, N. Targeting drugs to the brain by redox chemical delivery systems. Med. Res. Rev. 2000, 20, 367–416.
[29]
Breese, G.; Cott, J.; Cooper, B.; Prange, A.; Lippton, M.; Plotnikoff, N. Effects of thyrotropin-releasing hormone (TRH) on the actions of pentobarbital and other centrally acting drugs. J. Pharmacol. Exp. Ther. 1975, 193, 11–22.
[30]
Hinkle, P.M.; Pekary, A.E.; Senanayaki, S.; Sattin, A. Role of TRH receptors as possible mediators of analeptic actions of TRH-like peptides. Brain Res. 2002, 10, 59–64.
[31]
Lloyd, R.L.; Pekary, A.E.; Sattin, A.; Amundson, T. Antidepressant effects of thyrotropin-releasing hormone analogues using a rodent model of depression. Pharmacol. Biochem. Behav. 2001, 70, 15–22, doi:10.1016/S0091-3057(01)00555-X.
[32]
Callahan, A.M.; Frye, M.A.; Marangell, L.B.; George, M.S.; Ketter, T.A.; L’Herrou, T.; Post, R.M. Comparative antidepressant effects of intravenous and intrathecal thyrotropin-releasing hormone: Confounding effects of tolerance and implications for therapeutics. Biol. Psychiatry 1997, 41, 264–272.
[33]
Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatment. Nature 1977, 266, 730–732.
[34]
Schmidt, D. Effects of thyrotropin releasing hormone (TRH) on pentobarbital-induced decrease in cholinergic neuronal activity. Commun. Psychopharm. 1977, 1, 469–473.
[35]
Pekary, U.A.; Faull, A.; Paulson, K.F.; Lloyd, R.L.; Sattin, A. TRH-like antidepressant peptide, pyroglutamyltyroslyprolineamide, occurs in rat brain. J. Mass Spectrom. 2005, 40, 1232–1236, doi:10.1002/jms.904.
[36]
Prokai-Tatrai, K.; Nguyen, V.; Zharikova, A.D.; Braddy, A.C.; Stevens, S.M., Jr.; Prokai, L. Prodrugs to enhance central nervous system effects of the TRH-like peptide pGlu-Glu-Pro-NH2. Bioorg. Med. Chem. Lett. 2003, 13, 1011–1014.
[37]
Prokai-Tatrai, K.; Teixido, M.; Nguyen, V.; Zharikova, A.D.; Prokai, L. A pyridinium-substituted analogue of the TRH-like tripeptide pGlu-Glu-Pro-NH2 and its prodrugs as central nervous system agents. Med. Chem. 2005, 2, 141–152.
[38]
Brown, W. Taltirelin. Tanabe Seiyaku. IDrugs 1999, 2, 1059–1068.
[39]
Prokai-Tatrai, K.; Szarka, S.; Nguyen, V.; Sahyouni, F.; Walker, C.; White, S.; Talamantes, T.; Prokai, L. “All in the mind”? Brain-targeting chemical delivery system of 17β-estradiol (Estredox) produces significant uterotrophic side effect. Pharm. Anal. Acta 2012, S7, doi:10.4172/2153-2435.S7-002.
[40]
Ogawa, N.; Mizuno, S.; Mori, A.; Nukina, I.; Ota, Z.; Yamamoto, M. Potential antidepressive effects of thyrotropin releasing hormone (TRH) and its analogues. Peptides 1984, 5, 743–746, doi:10.1016/0196-9781(84)90016-0.
[41]
Keppel, G.; Wickens, T.D. Design and Analysis: A Researcher’s Handbook, 4th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004.