Preclinical Absorption, Distribution, Metabolism, and Excretion of an Oral Amide Prodrug of Gemcitabine Designed to Deliver Prolonged Systemic Exposure
Gemcitabine is an intravenously administered nucleoside analog chemotherapeutic agent. The ability to deliver this agent as an oral drug would allow greater flexibility of administration and patient convenience; however, attempts have been fraught with high first-pass metabolism and potential intestinal toxicity. Alternatively, an amide prodrug of gemcitabine (LY2334737) was discovered, which is able to avoid the extensive first-pass metabolism that occurs following administration of gemcitabine. Preclinical in vitro and in vivo experiments were conducted to evaluate the hydrolysis and pharmacokinetics of LY2334737 and its downstream metabolites. In mice, rats, and dogs, the prodrug is absorbed largely intact across the intestinal epithelium and delivers LY2334737 to systemic circulation. The hydrolysis of LY2334737 is relatively slow, resulting in sustained release of gemcitabine in vivo. In vitro experiments identified carboxylesterase 2 (CES2) as a major enzyme involved in the hydrolysis of LY2334737, but with relatively low intrinsic clearance. Following hydrolysis of the prodrug, gemcitabine is cleared predominantly via the formation of its inactive metabolite dFdU. Both biliary and renal excretion was responsible for the elimination of LY2334737 and its metabolites in both mice and dogs.
References
[1]
Burris, H.A.; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 1997, 15, 2403–2413.
[2]
Hilbig, A.; Oettle, H. Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev. Anticanc. 2008, 8, 511–523, doi:10.1586/14737140.8.4.511.
[3]
Lorusso, D.; di stefano, a.; Fanfani, F.; Scambia, G. Role of gemcitabine in ovarian cancer treatment. Ann. Oncol. 2006, 17, 188–194, doi:10.1093/annonc/mdj979.
[4]
Thigpen, T. The role of gemcitabine in first-line treatment of advanced ovarian carcinoma. Semin. Oncol. 2006, 33, 26–32.
[5]
Mornex, F.; Girard, N. Gemcitabine and radiation therapy innon-small cell lung cancer: State of the art. Ann. Oncol. 2006, 17, 1743–1747, doi:10.1093/annonc/mdl117.
[6]
Favaretto, A.G. Non-platinum combination of gemcitabine in NSCLC. Ann. Oncol. 2006, 17, 82–85, doi:10.1093/annonc/mdj957.
[7]
Silvestris, N.; Cinieri, S.; La Torre, I.; Pezzella, G.; Numico, G.; Orlando, L.; Lorusso, V. Role of gemcitabine in metastatic breast cancer patients: A short review. Breast 2008, 17, 220–226, doi:10.1016/j.breast.2007.10.009.
[8]
Dent, S.; Messersmith, H.; Trudeau, M. Gemcitabine in the management of metastatic breast cancer: A systematic review. Breast Cancer Res. Treat. 2008, 108, 319–331.
[9]
Bellmunt, J.; Albiol, S.; de Olano, A.R.; Pujadas, J.; Maroto, P. Gemcitabine in the treatment of advanced transitional cell carcinoma of the urothelium. Ann. Oncol. 2006, 17, 113–117, doi:10.1093/annonc/mdj964.
[10]
El Karak, F.; Flechon, A. Gemcitabine in bladder cancer. Expert Opin. Pharmaco. 2007, 8, 3251–3256, doi:10.1517/14656566.8.18.3251.
[11]
Eli Lilly and Company. Gemzar? (gemcitabine HCl) for injection. Package label. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020509s033lbl.pdf (accessed on 2 May 2013).
[12]
Huang, P.; Chubb, S.; Hertel, L.; Grindey, G.; Plunkett, W. Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991, 51, 6110–6117.
[13]
Ruiz van Haperen, V.; Vererman, G.; Vermorken, J.B.; Peters, G.J. 2',2'-Difluorodeoxycytidine (gemcitabine) incorporation into RNA and DNA from tumour cell lines. Biochem Pharmacol. 1993, 46, 762–766, doi:10.1016/0006-2952(93)90566-F.
[14]
Plunkett, W.; Huang, P.; Xu, Y.Z.; Heinemann, V.; Grunewald, R.; Gandhi, V. Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Semin. Oncol. 1995, 22, 3–10.
[15]
Plunkett, W.; Huang, P.; Searcy, C.E.; Gandhi, V. Gemcitabine: Preclinical pharmacology and mechanism of action. Semin. Oncol. 1996, 23, 3–15.
[16]
Heinemann, V.; Xu, Y.; Chubb, S.; Sen, A.; Hertel, L.; Grindey, G.; Plunkett, W. Cellular elimination of 2',2'-difluorodeoxycytidine 5'-triphosphate: A mechanism of self-potentiation. Cancer Res. 1992, 52, 533–539.
[17]
Kroep, J.; van Moorsel, C.; Veerman, G.; Voorn, D.; Schultz, R.; Worzalla, J.; Tanzer, L.; Merriman, R.; Pinedo, H.; Peters, G. Role of deoxycytidine kinase (dCK), thymidine kinase 2 (TK2), and deoxycytidine deaminase (dCDA) in the antitumor activity of gemcitabine (dFdC). Adv. Exp. Med. Biol. 1998, 431, 657–660, doi:10.1007/978-1-4615-5381-6_127.
[18]
Patel, S.R.; Gandhi, V.; Jenkins, J.; Papadopolous, N.; Burgess, M.A.; Plager, C.; Plunkett, W.; Benjamin, R.S. Phase II clinical investigation of gemcitabine in advanced soft tissue sarcomas and window evaluation of dose rate on gemcitabine triphosphate accumulation. J. Clin. Oncol. 2001, 19, 3483–3489.
[19]
Gandhi, V.; Plunkett, W.; Du, M.; Ayres, M.; Estey, E.H. Prolonged Infusion of gemcitabine: Clinical and pharmacodynamic studies during a phase I trial in relapsed acute Myelogenous Leukemia. J. Clin. Oncol. 2002, 20, 665–673, doi:10.1200/JCO.20.3.665.
[20]
Eckel, F.; Schmelz, R.; Erdmann, J.; Mayr, M.; Lersch, C. Phase II trial of a 24-hour infusion of gemcitabine in previously untreated patients with advanced pancreatic adenocarcinoma. Cancer Invest. 2003, 21, 690–694, doi:10.1081/CNV-120023767.
[21]
Veltkamp, S.A.; Jansen, R.S.; Callies, S.; Pluim, D.; Visseren-Grul, C.M.; Rosing, H.; Kloeker-Rhoades, S.; Andre, V.A.M.; Beijnen, J.H.; Slapak, C.A.; et al. Oral Administration of Gemcitabine in Patients with Refractory Tumors: A Clinical and Pharmacologic Study. Clin. Cancer Res. 2008, 14, 3477–3486, doi:10.1158/1078-0432.CCR-07-4521.
[22]
Malet-Martino, M.; Martino, R. Clinical studies of 5-fluorouracil (capecitabine, UFT, S-1): A review. Oncologist 2002, 7, 288–323, doi:10.1634/theoncologist.7-4-288.
[23]
Ettmayer, P.; Amidon, G.; Clement, B.; Testa, B. Lessons learned from marketed and investigational prodrugs. J. Med. Chem. 2004, 47, 2393–2404, doi:10.1021/jm0303812.
[24]
Pazdur, R.; Hoff, P.M.; Medgyesy, D.; Royce, M.; Brito, R.A. The Oral Fluorouracil Prodrugs. Oncology 1998, 12, 48–51.
[25]
Bender, D.M.; Bao, J.; Dantzig, A.H.; Diseroad, W.D.; Law, K.L.; Magnus, N.A.; Peterson, J.A.; Perkins, E.J.; Pu, Y.J.; Reutzel-Edens, S.M.; et al. Synthesis, crystallization, and biological evaluation of an orally active prodrug of gemcitabine. J. Med. Chem. 2009, 52, 6958–6961, doi:10.1021/jm901181h.
[26]
Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; J?rvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008, 7, 255–270, doi:10.1038/nrd2468.
[27]
Potter, P.M.; Wadkins, R.M. Carboxylesterases—Detoxifying enzymes and targets for drug therapy. Curr. Med. Chem. 2006, 13, 1045–1054, doi:10.2174/092986706776360969.
[28]
Yang, C.Y.; Dantzig, A.H.; Pidgeon, C. Intestinal peptide transport systems and oral drug availability. Pharm. Res. 1999, 16, 1331–1343, doi:10.1023/A:1018982505021.
[29]
Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 1993, 10, 1093–1095, doi:10.1023/A:1018943613122.
[30]
Pratt, S.E.; Durland-Busbice, S.; Shepard, R.L.; Heinz-Taheny, K.; Iversen, P.W.; Dantzig, A.H. Human carboxylesterase 2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin. Cancer Res. 2013, 19, 1159–1168, doi:10.1158/1078-0432.CCR-12-1184.
[31]
Shipley, L.A.; Brown, T.J.; Cornpropst, D.; Hamilton, M.; Daniels, W.D.; Culp, H.W. Metabolism and disposition of gemcitabine, an oncolytic deoxycytidine analog, in mice, rats, and dogs. Drug Metab. Dispos. 1992, 20, 849–855.
[32]
Abbruzzese, J.L.; Grunewald, R.; Weeks, E.A.; Gravel, D.; Adams, T.; Nowak, B.; Mineishi, S.; Tarassoff, P.; Satterlee, W.; Raber, M.N.; et al. A Phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J. Clin. Oncol. 1991, 9, 491–498.
[33]
Satoh, T.; Taylor, P.; Bosron, W.F.; Sanghani, S.P.; Hosokawa, M.; La Du, B.N. Current progress on esterases: From molecular structure to function. Drug Metab. Dispos. 2002, 30, 488–493, doi:10.1124/dmd.30.5.488.
[34]
Taketani, M.; Shii, M.; Ohura, K.; Ninomiya, S.; Imai, T. Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci. 2007, 81, 924–932, doi:10.1016/j.lfs.2007.07.026.
[35]
Sanghani, S.P.; Sanghani, P.C.; Schiel, M.A.; Bosron, W.F. Human Carboxylesterases: An update on CES1, CES2 and CES3. Protein Peptide Lett. 2009, 16, 1207–1214, doi:10.2174/092986609789071324.
[36]
Pratt, S.E.; Durland-Busbice, S.; Shepard, R.L.; Donoho, G.; Starling, J.J.; Wickremsinhe, E.; Perkins, E.J.; Dantzig, A.H. Efficacy of low-dose oral metronomic dosing of the prodrug of gemcitabine, LY2334737, in human tumor xenografts. Mol. Cancer Ther. 2013, 12, 481–490, doi:10.1158/1535-7163.MCT-12-0654.