Polyphenol-rich grape seed extract (0.1 w/ w%) was incorporated in liposomes (1 w/ w% soy lecithin) by high pressure homogenization (22,500 psi) and coated with chitosan (0.1 w/ w%). Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%), whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%). The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.
References
[1]
Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds—Biochemistry and functionality. J. Med. Food 2003, 6, 291–299, doi:10.1089/109662003772519831.
[2]
Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts—Potential applications in food safety and quality. Food Res. Int. 2011, 44, 827–839, doi:10.1016/j.foodres.2011.01.022.
[3]
Lutterodt, H.; Slavin, M.; Whent, M.; Turner, E.; Yu, L.L. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem. 2011, 128, 391–399, doi:10.1016/j.foodchem.2011.03.040.
[4]
Kar, P.; Laight, D.; Shaw, K.M.; Cummings, M.H. Flavonoid-rich grapeseed extracts: A new approach in high cardiovascular risk patients? Int. J. Clin. Pract. 2006, 60, 1484–1492, doi:10.1111/j.1742-1241.2006.01038.x.
Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008, 18, 309–327, doi:10.1080/08982100802465941.
[7]
Mozafari, M.R.; Flanagan, J.; Matia-Merino, L.; Awati, A.; Omri, A.; Suntres, Z.E.; Singh, H. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J. Sci. Food Agric. 2006, 86, 2038–2045, doi:10.1002/jsfa.2576.
[8]
Gibis, M.; Vogt, E.; Weiss, J. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food Funct. 2012, 3, 246–254, doi:10.1039/c1fo10181a.
[9]
Nakayama, T.; Kajiya, K.; Kumazawa, S. Interaction of plant polyphenols with liposomes. Adv. Planar Lipid Bilayers Liposomes 2006, 4, 107–133, doi:10.1016/S1554-4516(06)04004-X.
[10]
Lu, F.S.H.; Nielsen, N.S.; Timm-Heinrich, M.; Jacobsen, C. Oxidative stability of marine phospholipids in the liposomal form and their application. Lipids 2011, 46, 3–23, doi:10.1007/s11745-010-3496-y.
[11]
McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 577–606, doi:10.1080/10408390902841529.
[12]
McClements, D.J.; Li, Y. Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 2010, 159, 213–228, doi:10.1016/j.cis.2010.06.010.
[13]
Taylor, T.M.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Liposomal nanocapsules in Food Science and Agriculture. Crit. Rev. Food Sci. Nutr. 2005, 45, 587–605, doi:10.1080/10408390591001135.
[14]
Guzey, D.; McClements, J.D. Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid Interface Sci. 2006, 128–130, 227–248, doi:10.1016/j.cis.2006.11.021.
[15]
Degim, Z.; Celebi, N.; Alemdaroglu, C.; Deveci, M.; ?ztürk, S.; ?zugul, C. Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. Int. Wound J. 2011, 8, 343–354, doi:10.1111/j.1742-481X.2011.00795.x.
[16]
Wang, J.L.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 2011, 6, 765–774.
[17]
Panya, A.; Laguerre, M.; Lecomte, J.; Villeneuve, P.; Weiss, J.; McClements, D.J.; Decker, E.A. Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. J. Agric. Food Chem. 2010, 58, 5679–5684, doi:10.1021/jf100133b.
[18]
Ogawa, S.; Decker, E.A.; McClements, D.J. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J. Agric. Food Chem. 2003, 51, 5522–5527, doi:10.1021/jf026103d.
[19]
Gudipati, V.; Sandra, S.; McClements, D.J.; Decker, E.A. Oxidative stability and in vitro digestability of fish oil-in-water emulsions containing multilayered membranes. J. Agric. Food Chem. 2010, 58, 8093–8099, doi:10.1021/jf101348c.
Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2008, 112, 551–559.
[22]
Gibis, M.; Weiss, J. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chem. 2012, 134, 766–774, doi:10.1016/j.foodchem.2012.02.179.
[23]
Romeu-Nadal, M.; Castellote, A.I.; López-Sabater, M.C. Headspace gas chromatographic method for determining volatile compounds in infant formulas. J. Chromatogr. A 2004, 1046, 235–239, doi:10.1016/j.chroma.2004.06.032.
[24]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178, doi:10.1016/S0076-6879(99)99017-1.
[25]
Laye, C.; McClements, D.J.; Weiss, J. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J. Food Sci. 2008, 73, N7–N15, doi:10.1111/j.1750-3841.2008.00747.x.