全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2013 

New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A

DOI: 10.3390/pharmaceutics5030411

Keywords: biosurfactant, cationic liposome, membrane fusion, siRNA, CLSM

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs) into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A) are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A.

References

[1]  Check, E. Gene therapy: A tragic setback. Nature 2002, 420, 116–118, doi:10.1038/420116a.
[2]  Felgner, P.L.; Ringold, G.M. Cationic liposome-mediated transfection. Nature 1989, 337, 387–388, doi:10.1038/337387a0.
[3]  Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringhold, G.M.; Danielson, M. Lipofectin: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417, doi:10.1073/pnas.84.21.7413.
[4]  Gao, X.; Huang, L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 1991, 179, 280–285, doi:10.1016/0006-291X(91)91366-K.
[5]  Okayama, R.; Noji, M.; Nakanishi, M. Cationic cholesterol with a hydroxyethylamino head group promotes significantly liposome-mediated gene transfection. FEBS Lett. 1997, 408, 232–234, doi:10.1016/S0014-5793(97)00431-6.
[6]  Lee, R.J.; Huang, L. Folate-targeted, anionic liposome-entrapped polylysin-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 1996, 271, 8481–8487, doi:10.1074/jbc.271.14.8481.
[7]  Ledley, F.D. Non-viral gene therapy: The promise of genes as pharamaceutical products. Hum. Gene Ther. 1995, 6, 1129–1144, doi:10.1089/hum.1995.6.9-1129.
[8]  Farhood, H.; Bottega, R.; Epand, R.M.; Huang, L. Effect of cationic choresterol derivatives on gene transfer and protein kinase C activity. Biochem. Biophys. Acta 1992, 1111, 239–246, doi:10.1016/0005-2736(92)90316-E.
[9]  Nakanishi, M. New strategy in gene transfection by cationic transfection lipids with a cationic cholesterol. Curr. Med. Chem. 2003, 10, 1289–1296, doi:10.2174/0929867033457395.
[10]  Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Mol. Biol. Rev. 1997, 61, 47–64.
[11]  Kitamoto, D.; Akiba, S.; Hioki, T.; Tabuchi, T. Extracellular accumulation of mannnosylerythrytol lipids by a strain of Candida antractica. Agric. Biol. Chem. 1990, 54, 31–36, doi:10.1271/bbb1961.54.31.
[12]  Kitamoto, D.; Yanagishita, H.; Haraya, K.; Kitamoto, H.K. Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannnosylerythrytol lipid (biosurfactant) in the yeast Cndida Antarctica: Effect of β-oxidation inhibitors on biosurfactant synthesis. Biotechnol. Lett. 1998, 20, 813–818, doi:10.1023/A:1005347022247.
[13]  Lin, S.C. Biosurfactants: Recent advances. J. Chem. Tech. Biotechnol. 1996, 66, 109–120, doi:10.1002/(SICI)1097-4660(199606)66:2<109::AID-JCTB477>3.0.CO;2-2.
[14]  Kitamoto, D.; Ghosh, S.; Ourisson, G.; Nakatani, Y. Formation of giant vesicles from diacylmannosylerithritols, and their binding to concanavalin A. Chem. Commun. 2000, 861–862.
[15]  Inoh, Y.; Kitamoto, D.; Hirashima, N.; Nakanishi, M. Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes. Biochem. Biophys. Res. Commun. 2001, 289, 57–61, doi:10.1006/bbrc.2001.5930.
[16]  Inoh, Y.; Kitamoto, D.; Hirashima, N.; Nakanishi, M. Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. J. Control Release 2004, 94, 423–431, doi:10.1016/j.jconrel.2003.10.020.
[17]  Ueno, Y.; Hirashima, N.; Inoh, Y.; Furuno, T.; Nakanishi, M. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol. Pharm. Bull. 2007, 30, 169–172, doi:10.1248/bpb.30.169.
[18]  Ueno, Y.; Inoh, Y.; Furuno, T.; Hirashima, N.; Kitamoto, D.; Nakanishi, M. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J. Control Release 2007, 123, 247–253, doi:10.1016/j.jconrel.2007.08.012.
[19]  Nakanishi, M.; Inoh, Y.; Kitamoto, D.; Furuo, T. Nano vectors with a biorurfactant for gene transfection and drug delivery. J. Drug. Deliv. Sci. Tech. 2009, 19, 165–169.
[20]  Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498, doi:10.1038/35078107.
[21]  Sen, G.L.; Blau, H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 2005, 7, 633–636, doi:10.1038/ncb1265.
[22]  Meister, G.; Landthaler, M.; Patkaniowska, A.; Dorsett, Y.; Teng, G.; Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 2004, 15, 185–197, doi:10.1016/j.molcel.2004.07.007.
[23]  Meade, B.R.; Dowdy, S.F. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv. Drug Deliv. Rev. 2008, 60, 530–536, doi:10.1016/j.addr.2007.10.004.
[24]  Jacque, J.M.; Triques, K.; Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 2002, 418, 435–438, doi:10.1038/nature00896.
[25]  Zender, L.; Hutker, S.; Liedtke, C.; Tillmann, H.L.; Zender, S.; Mundt, B.; Waltemathe, M.; Gosling, T.; Flemming, P.; Malek, N.P.; et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl. Acad. Sci. USA 2003, 100, 7797–7802, doi:10.1073/pnas.1330920100.
[26]  Poeck, H.; Besch, R.; Maihoefer, C.; Renn, M.; Tormo, D.; Morskaya, S.S.; Kirschnek, S.; Gaffal, E.; Landsberg, J.; Hellmuth, J.; et al. 5'-triphosphate-siRNA: Turning gene silencing and Rig-I activation against melanoma. Nat. Med. 2008, 14, 1256–1263, doi:10.1038/nm.1887.
[27]  Akhtar, S.; Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 2007, 17, 3623–3632, doi:10.1172/JCI33494.
[28]  Brantl, S. Antisense-RNA regulation and RNA interference. Biochim. Biophys. Acta 2002, 1575, 15–25, doi:10.1016/S0167-4781(02)00280-4.
[29]  Chiu, Y.L.; Ali, A.; Chu, C.Y.; Cao, H.; Rana, T.M. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 2004, 11, 1165–1175, doi:10.1016/j.chembiol.2004.06.006.
[30]  Kogure, K.; Akita, H.; Yamada, Y.; Harashima, H. Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 2008, 60, 559–571, doi:10.1016/j.addr.2007.10.007.
[31]  Han, S.E.; Kang, H.; Shim, G.Y.; Suh, M.S.; Kim, S.J.; Kim, J.S.; Oh, Y.K. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int. J. Pharm. 2008, 353, 260–269.
[32]  Negishi, Y.; Endo, Y.; Fukuyama, T.; Suzuki, R.; Takizawa, T.; Omata, D.; Maruyama, K.; Aramaki, Y. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J. Control. Release 2008, 132, 124–130, doi:10.1016/j.jconrel.2008.08.019.
[33]  Kim, H.K.; Davaa, E.; Myung, C.S.; Park, J.S. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int. J. Pharm. 2010, 392, 141–147, doi:10.1016/j.ijpharm.2010.03.047.
[34]  Segura, T.; Hubbell, J.A. Synthesis and in vitro characterization of an ABC triblock copolymer for siRNA delivery. Bioconjug. Chem. 2007, 18, 736–745, doi:10.1021/bc060284y.
[35]  Ladewig, K.; Nibert, M.; Xu, Z.P.; Gray, P.P.; Lu, G.Q.M. Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 1821–1829, doi:10.1016/j.biomaterials.2009.10.058.
[36]  Inoh, Y.; Furuno, T.; Hirashima, N.; Kitamoto, D.; Nakanishi, M. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes. Biochem. Biophys. Res. Commun. 2011, 414, 635–640, doi:10.1016/j.bbrc.2011.09.147.
[37]  Kawaura, C.; Furuno, T.; Nakanishi, M. AFM images of cationic liposomes complexed with plasmid. Bioimages 1998, 5, 121–125.
[38]  Kawaura, C.; Noguchi, A.; Furuno, T.; Nakanishi, M. Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. FEBS Lett. 1998, 421, 69–72, doi:10.1016/S0014-5793(97)01532-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133