Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.
Kalivas, P.W.; Volkow, N.; Seamans, J. Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron 2005, 45, 647–650, doi:10.1016/j.neuron.2005.02.005.
[3]
Ericson, N. Substance Abuse : The Nation’s Number One Health Problem, Available online: https://www.ncjrs.gov/pdffiles1/ojjdp/fs200117.pdf (accessed on 28 October 2013).
[4]
Harwood, H.; Bouchery, E. The Economic Costs of Drug Abuse in the United States, 1992-2002, 2004. Available online: https://www.ncjrs.gov/App/abstractdb/AbstractDBDetails.aspx?id=207303 (accessed on 28 October 2013).
[5]
Fiscal Year 2008 Budget Request | National Institute on Drug Abuse. Available online: http://www.drugabuse.gov/about-nida/legislative-activities/testimony-to-congress/2007/03/fiscal-year-2008-budget-request (accessed on 28 October 2013).
[6]
Substance Abuse and Mental Health Services Administration; US Department of Health and Human Services. Results from the 2011 National Survey on Drug Use and Health: Summary of National Findings, Available online: http://www.samhsa.gov/data/nsduh/2k11results/nsduhresults2011.htm (accessed on 28 October 2013).
[7]
Sofuoglu, M.; DeVito, E.E.; Waters, A.J.; Carroll, K.M. Cognitive enhancement as a treatment for drug addictions. Neuropharmacology 2013, 64, 452–463, doi:10.1016/j.neuropharm.2012.06.021.
[8]
Sofuoglu, M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction 2010, 105, 38–48, doi:10.1111/j.1360-0443.2009.02791.x.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th ed. ed.; American Psychiatric Publishing: Washington, WA, USA, 2000.
O’Brien, C.P.; Volkow, N.D.; Li, T.-K. What’s in a word? Addiction versus dependence in DSM-V. Am. J. Psychiatry 2006, 163, 2014.
[14]
O’Brien, C. Addiction and dependence in DSM-V. Addiction 2011, 106, 866–867.
[15]
Ahmed, S.H. Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci. Biobehav. Rev. 2010, 35, 172–184, doi:10.1016/j.neubiorev.2010.04.005.
[16]
Ahmed, S.H. The science of making drug-addicted animals. Neuroscience 2012, 211, 107–125, doi:10.1016/j.neuroscience.2011.08.014.
[17]
Kalivas, P.; Volkow, N.D.N. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry 2011, 16, 974–986, doi:10.1038/mp.2011.46.
[18]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. ed.; American Psychiatric Publishing: Washington, WA, USA, 2013.
[19]
Berridge, K.C.; Robinson, T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 1998, 28, 309–369, doi:10.1016/S0165-0173(98)00019-8.
[20]
Feltenstein, M.W.; See, R.E. The neurocircuitry of addiction: An overview. Br. J. Pharmacol. 2008, 154, 261–274, doi:10.1038/bjp.2008.51.
[21]
Hyman, S.E.; Malenka, R.C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2001, 2, 695–703, doi:10.1038/35094560.
[22]
Spanagel, R.; Weiss, F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999, 22, 521–527, doi:10.1016/S0166-2236(99)01447-2.
[23]
Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 2008, 31, 359–387, doi:10.1146/annurev.neuro.29.051605.112851.
[24]
Kalivas, P.W. Neurobiology of cocaine addiction: implications for new pharmacotherapy. Am. J. Addict. 2007, 16, 71–78, doi:10.1080/10550490601184142.
[25]
Gass, J.T.; Olive, M.F. Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 2008, 75, 218–265, doi:10.1016/j.bcp.2007.06.039.
[26]
Cleva, R.; Gass, J. Neuroanatomical structures underlying the extinction of drug-seeking behavior. Open Addict. J. 2010, 3, 63–75, doi:10.2174/1874941001003020063.
[27]
Kalivas, P.W.; O’Brien, C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 2008, 33, 166–180, doi:10.1038/sj.npp.1301564.
[28]
Kalivas, P. Neurocircuitry of addiction. In Neuropsychopharmacology; Davis, K.L., Charney, D., Coyle, J.T., Nemeroff, C., Eds.; Lippincott, Williams, & Wilkins: Philadelphia, PA, USA, 2002; pp. 1357–1366.
[29]
Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669, doi:10.1038/nrn3119.
[30]
Kalivas, P.; Volkow, N. The neural basis of addiction: A pathology of motivation and choice. Am. J. Psychiatry 2005, 162, 1403–1413.
[31]
Jentsch, J.D.; Taylor, J.R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 1999, 146, 373–390, doi:10.1007/PL00005483.
[32]
Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202, doi:10.1146/annurev.neuro.24.1.167.
Field, M.; Cox, W.M. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend. 2008, 97, 1–20, doi:10.1016/j.drugalcdep.2008.03.030.
[35]
Kalivas, P.W. Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox. Res. 2008, 14, 185–189, doi:10.1007/BF03033809.
Kalivas, P.W.; Lalumiere, R.T.; Knackstedt, L.; Shen, H. Glutamate transmission in addiction. Neuropharmacology 2009, 56, 169–173, doi:10.1016/j.neuropharm.2008.07.011.
[38]
Gass, J.T.; Olive, M.F.F. Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol. Psychiatry 2009, 65, 717–720, doi:10.1016/j.biopsych.2008.11.001.
[39]
Peters, J.; Kalivas, P.W.; Quirk, G.J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem. 2009, 16, 279–288, doi:10.1101/lm.1041309.
[40]
LaLumiere, R.T.; Smith, K.C.; Kalivas, P.W. Neural circuit competition in cocaine-seeking: Roles of the infralimbic cortex and nucleus accumbens shell. Eur. J. Neurosci. 2012, 35, 614–622, doi:10.1111/j.1460-9568.2012.07991.x.
[41]
Cleva, R.M.; Gass, J.T.; Widholm, J.J.; Olive, M.F. Glutamatergic targets for enhancing extinction learning in drug addiction. Curr. Neuropharmacol. 2010, 8, 394–408, doi:10.2174/157015910793358169.
[42]
Olive, M.F.; Cleva, R.M.; Kalivas, P.W.; Malcolm, R.J. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Behav. 2012, 100, 801–810, doi:10.1016/j.pbb.2011.04.015.
[43]
Niciu, M.J.; Kelmendi, B.; Sanacora, G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 2012, 100, 656–664, doi:10.1016/j.pbb.2011.08.008.
[44]
Lisman, J.; Yasuda, R.; Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 2012, 13, 169–182.
Lamprecht, R.; LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 2004, 5, 45–54, doi:10.1038/nrn1301.
[47]
Chang, P.K.-Y.; Verbich, D.; McKinney, R.A. AMPA receptors as drug targets in neurological disease—Advantages, caveats, and future outlook. Eur. J. Neurosci. 2012, 35, 1908–1916, doi:10.1111/j.1460-9568.2012.08165.x.
[48]
Lynch, G.; Gall, C.M. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci. 2006, 29, 554–562, doi:10.1016/j.tins.2006.07.007.
[49]
Jog, M.S. Building neural representations of habits. Science 1999, 286, 1745–1749, doi:10.1126/science.286.5445.1745.
[50]
Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 2005, 8, 1481–1489, doi:10.1038/nn1579.
[51]
Marlatt, G.A. Cue exposure and relapse prevention in the treatment of addictive behaviors. Addict. Behav. 1990, 15, 395–399, doi:10.1016/0306-4603(90)90048-3.
[52]
Conklin, C.A.; Tiffany, S.T. Applying extinction research and theory to cue-exposure addiction treatments. Addiction 2002, 97, 155–167, doi:10.1046/j.1360-0443.2002.00014.x.
[53]
Havermans, R.C.; Jansen, A.T.M. Increasing the efficacy of cue exposure treatment in preventing relapse of addictive behavior. Addict. Behav. 2003, 28, 989–994, doi:10.1016/S0306-4603(01)00289-1.
[54]
Epstein, D.H.; Preston, K.L.; Stewart, J.; Shaham, Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology 2006, 189, 1–16, doi:10.1007/s00213-006-0529-6.
[55]
Bouton, M.E. Context and behavioral processes in extinction. Learn. Mem. 2004, 11, 485–494, doi:10.1101/lm.78804.
[56]
Bouton, M. Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biol. Psychiatry 2002, 52, 976–986, doi:10.1016/S0006-3223(02)01546-9.
[57]
Crombag, H.S.; Bossert, J.M.; Koya, E.; Shaham, Y. Context-induced relapse to drug seeking: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 3233–3243, doi:10.1098/rstb.2008.0090.
[58]
Rescorla, R. A Spontaneous recovery. Learn. Mem. 2004, 11, 501–509, doi:10.1101/lm.77504.
[59]
Taylor, J.R.; Olausson, P.; Quinn, J.J.; Torregrossa, M.M. Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 2009, 56, 186–195, doi:10.1016/j.neuropharm.2008.07.027.
Fuchs, R.A.; Branham, R.K.; See, R.E. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: A critical role for the dorsolateral caudate-putamen. J. Neurosci. 2006, 26, 3584–3588, doi:10.1523/JNEUROSCI.5146-05.2006.
[62]
Di Ciano, P.; Robbins, T.W.; Everitt, B.J. Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 2008, 33, 1413–1425, doi:10.1038/sj.npp.1301522.
[63]
Peters, J.; LaLumiere, R.T.; Kalivas, P.W. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J. Neurosci. 2008, 28, 6046–6053, doi:10.1523/JNEUROSCI.1045-08.2008.
[64]
LaLumiere, R.T.; Kalivas, P.W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J. Neurosci. 2008, 28, 3170–3177, doi:10.1523/JNEUROSCI.5129-07.2008.
[65]
Knackstedt, L.A.; Moussawi, K.; LaLumiere, R.T.; Schwendt, M.; Klugmann, M.; Kalivas, P.W. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J. Neurosci. 2010, 30, 7984–7992.
[66]
Childress, A.; Mozley, P. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 1999, 156, 1–15.
[67]
Ongür, D.; Price, J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 2000, 10, 206–219, doi:10.1093/cercor/10.3.206.
[68]
McFarland, K.; Kalivas, P.W. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 2001, 21, 8655–8663.
[69]
Kalivas, P.W.; McFarland, K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 2003, 168, 44–56, doi:10.1007/s00213-003-1393-2.
[70]
McFarland, K.; Lapish, C.C.; Kalivas, P.W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 2003, 23, 3531–7353.
[71]
LaLumiere, R.T.; Niehoff, K.E.; Kalivas, P.W. The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn. Mem. 2010, 17, 168–175, doi:10.1101/lm.1576810.
[72]
Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 2009, 10, 561–572, doi:10.1038/nrn2515.
[73]
Ghasemzadeh, M.B.; Vasudevan, P.; Mueller, C.; Seubert, C.; Mantsch, J.R. Region specific alterations in glutamate receptor expression and subcellular distribution following extinction of cocaine self-administration. Brain Res. 2009, 1267, 89–102.
[74]
Bachtell, R.K.; Choi, K.-H.; Simmons, D.L.; Falcon, E.; Monteggia, L.M.; Neve, R.L.; Self, D.W. Role of GluR1 expression in nucleus accumbens neurons in cocaine sensitization and cocaine-seeking behavior. Eur. J. Neurosci. 2008, 27, 2229–2240, doi:10.1111/j.1460-9568.2008.06199.x.
[75]
Lynch, G. Memory enhancement: the search for mechanism-based drugs. Nat. Neurosci. 2002, 5, S1035–S1038, doi:10.1038/nn935.
Arai, A.C.; Kessler, M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr. Drug Targets 2007, 8, 583–602, doi:10.2174/138945007780618490.
[78]
Lynch, G.; Palmer, L.C.; Gall, C.M. The likelihood of cognitive enhancement. Pharmacol. Biochem. Behav. 2011, 99, 116–129.
[79]
Swanson, G. Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon? Neuropsychopharmacology 2009, 34, 249–250, doi:10.1038/npp.2008.158.
[80]
Black, M.D. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology 2005, 179, 154–163, doi:10.1007/s00213-004-2065-6.
[81]
Marenco, S.; Weinberger, D.R. Therapeutic potential of positive AMPA receptor modulators in the treatment of neuropsychiatric disorders. CNS Drugs 2006, 20, 173–185, doi:10.2165/00023210-200620030-00001.
[82]
Jin, R.; Clark, S.; Weeks, A.M.; Dudman, J.T.; Gouaux, E.; Partin, K.M. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 2005, 25, 9027–9036, doi:10.1523/JNEUROSCI.2567-05.2005.
[83]
ONeill, M.; Bleakman, D. AMPA receptor potentiators for the treatment of CNS disorders. CNS Neurol. Disord. 2004, 3, 181–194.
[84]
Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 2002, 1, 198–210, doi:10.1038/nrd746.
Staubli, U.; Rogers, G.; Lynch, G. Facilitation of glutamate receptors enhances memory. Proc. Natl. Acad. Sci. USA 1994, 91, 777–781, doi:10.1073/pnas.91.2.777.
[87]
Mattson, M. Excitotoxic and excitoprotective mechanisms. Neuromol. Med. 2003, 3, 65–94, doi:10.1385/NMM:3:2:65.
[88]
Mehta, A.; Prabhakar, M.; Kumar, P.; Deshmukh, R.; Sharma, P.L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 2013, 698, 6–18, doi:10.1016/j.ejphar.2012.10.032.
[89]
Shaffer, C.L.; Hurst, R.S.; Scialis, R.J.; Osgood, S.M.; Bryce, D.K.; Hoffmann, W.E.; Lazzaro, J.T.; Hanks, A.N.; Lotarski, S.; Weber, M.L.; et al. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: The interspecies exposure-response continuum of the novel potentiator PF-4778574. J. Pharmacol. Exp. Ther. 2013, 347, 212–224, doi:10.1124/jpet.113.204735.
[90]
Sekiguchi, M.; Nishikawa, K.; Aoki, S.; Wada, K. A desensitization-selective potentiator of AMPA-type glutamate receptors. Br. J. Pharmacol. 2002, 136, 1033–1041, doi:10.1038/sj.bjp.0704804.
[91]
Bramham, C.R.; Messaoudi, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol. 2005, 76, 99–125, doi:10.1016/j.pneurobio.2005.06.003.
[92]
Clarkson, A.N.; Overman, J.J.; Zhong, S.; Mueller, R.; Lynch, G.; Carmichael, S.T. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J. Neurosci. 2011, 31, 3766–3775, doi:10.1523/JNEUROSCI.5780-10.2011.
[93]
Silverman, J.L.; Oliver, C.F.; Karras, M.N.; Gastrell, P.T.; Crawley, J.N. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 2013, 64, 268–282, doi:10.1016/j.neuropharm.2012.07.013.
[94]
Bowers, M.S.; Chen, B.T.; Bonci, A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron 2010, 67, 11–24, doi:10.1016/j.neuron.2010.06.004.
[95]
Ghitza, U.E.; Zhai, H.; Wu, P.; Airavaara, M.; Shaham, Y.; Lu, L. Role of BDNF and GDNF in drug reward and relapse: A review. Neurosci. Biobehav. Rev. 2010, 35, 157–171, doi:10.1016/j.neubiorev.2009.11.009.
[96]
Willcocks, A.L.; McNally, G.P. The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats. Eur. J. Neurosci. 2013, 37, 259–268, doi:10.1111/ejn.12031.
[97]
Xue, Y.-X.; Luo, Y.-X.; Wu, P.; Shi, H.-S.; Xue, L.-F.; Chen, C.; Zhu, W.-L.; Ding, Z.-B.; Bao, Y.-P.; Shi, J.; et al. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 2012, 336, 241–245, doi:10.1126/science.1215070.