The Inhibition of Stat5 by a Peptide Aptamer Ligand Specific for the DNA Binding Domain Prevents Target Gene Transactivation and the Growth of Breast and Prostate Tumor Cells
The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA) ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX) scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment.
References
[1]
Groner, B.; Hennighausen, L. The versatile regulation of cellular events by jak-stat signaling: From transcriptional control to microtubule dynamics and energy metabolism. Horm. Mol. Biol. Clin. Invest. 2012, 10, 193–200.
[2]
Levy, D.E.; Darnell, J.E., Jr. Stats: Transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 2002, 3, 651–662, doi:10.1038/nrm909.
Reich, N.C.; Liu, L. Tracking stat nuclear traffic. Nat. Rev. Immunol. 2006, 6, 602–612, doi:10.1038/nri1885.
[5]
Mohr, A.; Chatain, N.; Domoszlai, T.; Rinis, N.; Sommerauer, M.; Vogt, M.; Muller-Newen, G. Dynamics and non-canonical aspects of jak/stat signalling. Eur. J. Cell Biol. 2012, 91, 524–532, doi:10.1016/j.ejcb.2011.09.005.
[6]
Lee, J.E.; Yang, Y.M.; Liang, F.X.; Gough, D.J.; Levy, D.E.; Sehgal, P.B. Nongenomic stat5-dependent effects on golgi apparatus and endoplasmic reticulum structure and function. Am. J. Physiol. Cell Physiol. 2012, 302, C804–C820, doi:10.1152/ajpcell.00379.2011.
[7]
Wakao, H.; Gouilleux, F.; Groner, B. Mammary gland factor (mgf) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994, 13, 2182–2191.
[8]
Liu, X.; Robinson, G.W.; Gouilleux, F.; Groner, B.; Hennighausen, L. Cloning and expression of stat5 and an additional homologue (stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl. Acad. Sci. USA 1995, 92, 8831–8835.
[9]
Hennighausen, L.; Robinson, G.W. Interpretation of cytokine signaling through the transcription factors stat5a and stat5b. Genes Dev. 2008, 22, 711–721, doi:10.1101/gad.1643908.
[10]
Kornfeld, J.W.; Grebien, F.; Kerenyi, M.A.; Friedbichler, K.; Kovacic, B.; Zankl, B.; Hoelbl, A.; Nivarti, H.; Beug, H.; Sexl, V.; et al. The different functions of stat5 and chromatin alteration through stat5 proteins. Front. Biosci. 2008, 13, 6237–6254.
[11]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674, doi:10.1016/j.cell.2011.02.013.
[12]
Yu, H.; Jove, R. The stats of cancer—New molecular targets come of age. Nat. Rev. Cancer 2004, 4, 97–105, doi:10.1038/nrc1275.
[13]
Demaria, M.; Giorgi, C.; Lebiedzinska, M.; Esposito, G.; D'Angeli, L.; Bartoli, A.; Gough, D.J.; Turkson, J.; Levy, D.E.; Watson, C.J.; et al. A stat3-mediated metabolic switch is involved in tumour transformation and stat3 addiction. Aging 2010, 2, 823–842.
[14]
Lewis, R.S.; Ward, A.C. Stat5 as a diagnostic marker for leukemia. Exp. Rev. Mol. Diagn. 2008, 8, 73–82, doi:10.1586/14737159.8.1.73.
[15]
Hoelbl, A.; Schuster, C.; Kovacic, B.; Zhu, B.; Wickre, M.; Hoelzl, M.A.; Fajmann, S.; Grebien, F.; Warsch, W.; Stengl, G.; et al. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol. Med. 2010, 2, 98–110, doi:10.1002/emmm.201000062.
[16]
Heuser, M.; Sly, L.M.; Argiropoulos, B.; Kuchenbauer, F.; Lai, C.; Weng, A.; Leung, M.; Lin, G.; Brookes, C.; Fung, S.; et al. Modeling the functional heterogeneity of leukemia stem cells: Role of stat5 in leukemia stem cell self-renewal. Blood 2009, 114, 3983–3993, doi:10.1182/blood-2009-06-227603.
[17]
Koptyra, M.; Gupta, S.; Talati, P.; Nevalainen, M.T. Signal transducer and activator of transcription 5a/b: Biomarker and therapeutic target in prostate and breast cancer. Int. J. Biochem. Cell Biol. 2011, 43, 1417–1421, doi:10.1016/j.biocel.2011.06.007.
[18]
Verdine, G.L.; Walensky, L.D. The challenge of drugging undruggable targets in cancer: Lessons learned from targeting bcl-2 family members. Clin. Cancer Res. 2007, 13, 7264–7270, doi:10.1158/1078-0432.CCR-07-2184.
[19]
Borghouts, C.; Kunz, C.; Delis, N.; Groner, B. Monomeric recombinant peptide aptamers are required for efficient intracellular uptake and target inhibition. Mol. Cancer Res. 2008, 6, 267–281, doi:10.1158/1541-7786.MCR-07-0245.
[20]
Walz, C.; Ahmed, W.; Lazarides, K.; Betancur, M.; Patel, N.; Hennighausen, L.; Zaleskas, V.M.; van Etten, R.A. Essential role for stat5a/b in myeloproliferative neoplasms induced by bcr-abl1 and jak2(v617f) n mice. Blood 2012, 119, 3550–3560, doi:10.1182/blood-2011-12-397554.
[21]
Funakoshi-Tago, M.; Tago, K.; Abe, M.; Sonoda, Y.; Kasahara, T. Stat5 activation is critical for the transformation mediated by myeloproliferative disorder-associated jak2 v617f mutant. J. Biol. Chem. 2010, 285, 5296–5307, doi:10.1074/jbc.M109.040733.
Harir, N.; Boudot, C.; Friedbichler, K.; Sonneck, K.; Kondo, R.; Martin-Lanneree, S.; Kenner, L.; Kerenyi, M.; Yahiaoui, S.; Gouilleux-Gruart, V.; et al. Oncogenic kit controls neoplastic mast cell growth through a stat5/pi3-kinase signaling cascade. Blood 2008, 112, 2463–2473, doi:10.1182/blood-2007-09-115477.
[24]
Liao, Z.; Lutz, J.; Nevalainen, M.T. Transcription factor stat5a/b as a therapeutic target protein for prostate cancer. Int. J. Biochem. Cell Biol. 2010, 42, 186–192, doi:10.1016/j.biocel.2009.11.001.
[25]
Clark, J.; Edwards, S.; Feber, A.; Flohr, P.; John, M.; Giddings, I.; Crossland, S.; Stratton, M.R.; Wooster, R.; Campbell, C.; et al. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cdna microarrays. Oncogene 2003, 22, 1247–1252, doi:10.1038/sj.onc.1206247.
[26]
Van Bokhoven, A.; Varella-Garcia, M.; Korch, C.; Johannes, W.U.; Smith, E.E.; Miller, H.L.; Nordeen, S.K.; Miller, G.J.; Lucia, M.S. Molecular characterization of human prostate carcinoma cell lines. Prostate 2003, 57, 205–225, doi:10.1002/pros.10290.
[27]
Dagvadorj, A.; Collins, S.; Jomain, J.B.; Abdulghani, J.; Karras, J.; Zellweger, T.; Li, H.; Nurmi, M.; Alanen, K.; Mirtti, T.; et al. Autocrine prolactin promotes prostate cancer cell growth via janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology 2007, 148, 3089–3101, doi:10.1210/en.2006-1761.
[28]
Evans, M.K.; Yu, C.R.; Lohani, A.; Mahdi, R.M.; Liu, X.; Trzeciak, A.R.; Egwuagu, C.E. Expression of socs1 and socs3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals. Oncogene 2007, 26, 1941–1948, doi:10.1038/sj.onc.1209993.
[29]
Olayioye, M.A.; Beuvink, I.; Horsch, K.; Daly, J.M.; Hynes, N.E. Erbb receptor-induced activation of stat transcription factors is mediated by src tyrosine kinases. J. Biol. Chem. 1999, 274, 17209–17218.
[30]
Tan, S.H.; Dagvadorj, A.; Shen, F.; Gu, L.; Liao, Z.; Abdulghani, J.; Zhang, Y.; Gelmann, E.P.; Zellweger, T.; Culig, Z.; et al. Transcription factor stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res. 2008, 68, 236–248, doi:10.1158/0008-5472.CAN-07-2972.
[31]
Dagvadorj, A.; Kirken, R.A.; Leiby, B.; Karras, J.; Nevalainen, M.T. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clinical Cancer Res. 2008, 14, 1317–1324, doi:10.1158/1078-0432.CCR-07-2024.
Hassel, J.C.; Winnemoller, D.; Schartl, M.; Wellbrock, C. Stat5 contributes to antiapoptosis in melanoma. Melanoma Res. 2008, 18, 378–385, doi:10.1097/CMR.0b013e32830ce7d7.
[34]
Mirmohammadsadegh, A.; Hassan, M.; Bardenheuer, W.; Marini, A.; Gustrau, A.; Nambiar, S.; Tannapfel, A.; Bojar, H.; Ruzicka, T.; Hengge, U.R. Stat5 phosphorylation in malignant melanoma is important for survival and is mediated through src and jak1 kinases. J. Invest. Dermatol. 2006, 126, 2272–2280, doi:10.1038/sj.jid.5700385.
[35]
Walker, S.R.; Nelson, E.A.; Zou, L.; Chaudhury, M.; Signoretti, S.; Richardson, A.; Frank, D.A. Reciprocal effects of stat5 and stat3 in breast cancer. Mol. Cancer Res. 2009, 7, 966–976, doi:10.1158/1541-7786.MCR-08-0238.
Sultan, A.S.; Xie, J.; LeBaron, M.J.; Ealley, E.L.; Nevalainen, M.T.; Rui, H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 2005, 24, 746–760, doi:10.1038/sj.onc.1208203.
[38]
Grimm, D.; Streetz, K.L.; Jopling, C.L.; Storm, T.A.; Pandey, K.; Davis, C.R.; Marion, P.; Salazar, F.; Kay, M.A. Fatality in mice due to oversaturation of cellular microrna/short hairpin rna pathways. Nature 2006, 441, 537–541, doi:10.1038/nature04791.
[39]
Yan, S.J.; Lim, S.J.; Shi, S.; Dutta, P.; Li, W.X. Unphosphorylated stat and heterochromatin protect genome stability. FASEB J. 2011, 25, 232–241, doi:10.1096/fj.10-169367.
Chueh, F.Y.; Leong, K.F.; Yu, C.L. Mitochondrial translocation of signal transducer and activator of transcription 5 (stat5) in leukemic t cells and cytokine-stimulated cells. Biochem. Biophys. Res. Commun. 2010, 402, 778–783, doi:10.1016/j.bbrc.2010.10.112.
[42]
Gilbert, S.; Zhang, R.; Denson, L.; Moriggl, R.; Steinbrecher, K.; Shroyer, N.; Lin, J.; Han, X. Enterocyte stat5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol. Med. 2012, 4, 109–124, doi:10.1002/emmm.201100192.
[43]
Bickle, M.B.; Dusserre, E.; Moncorge, O.; Bottin, H.; Colas, P. Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nat. protoc. 2006, 1, 1066–1091, doi:10.1038/nprot.2006.32.
[44]
Colas, P. The eleven-year switch of peptide aptamers. J. Biol. 2008, 7, 2, doi:10.1186/jbiol64.
[45]
Hamdi, A.; Colas, P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol. Sci. 2012, 33, 109–118, doi:10.1016/j.tips.2011.10.008.
[46]
Borghouts, C.; Kunz, C.; Groner, B. Peptide aptamer libraries. Comb. Chem. High Throughput Screen. 2008, 11, 135–145, doi:10.2174/138620708783744462.
[47]
Becker, S.; Groner, B.; Muller, C.W. Three-dimensional structure of the stat3beta homodimer bound to DNA. Nature 1998, 394, 145–151, doi:10.1038/28101.
[48]
Borghouts, C.; Delis, N.; Brill, B.; Weiss, A.; Mack, L.; Lucks, P.; Groner, B. A membrane penetrating aptamer inhibits stat3 function and suppresses the growth of stat3 addicted tumor cells. JAK-STAT 2012, 1, 44–54, doi:10.4161/jkst.18947.
[49]
Melen, K.; Fagerlund, R.; Franke, J.; Kohler, M.; Kinnunen, L.; Julkunen, I. Importin alpha nuclear localization signal binding sites for stat1, stat2, and influenza a virus nucleoprotein. J. Biol. Chem. 2003, 278, 28193–28200.
[50]
Groner, B. Transcription factor regulation in mammary epithelial cells. Domest. Anim. Endocrinol. 2002, 23, 25–32, doi:10.1016/S0739-7240(02)00142-X.
[51]
Engblom, D.; Kornfeld, J.W.; Schwake, L.; Tronche, F.; Reimann, A.; Beug, H.; Hennighausen, L.; Moriggl, R.; Schutz, G. Direct glucocorticoid receptor-stat5 interaction in hepatocytes controls body size and maturation-related gene expression. Genes Dev. 2007, 21, 1157–1162, doi:10.1101/gad.426007.
[52]
Demaison, C.; Parsley, K.; Brouns, G.; Scherr, M.; Battmer, K.; Kinnon, C.; Grez, M.; Thrasher, A.J. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Human Gene Ther. 2002, 13, 803–813, doi:10.1089/10430340252898984.
[53]
Butz, K.; Denk, C.; Ullmann, A.; Scheffner, M.; Hoppe-Seyler, F. Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral e6 oncoprotein. Proc. Natl. Acad. Sci. USA 2000, 97, 6693–6697, doi:10.1073/pnas.110538897.
[54]
Baines, I.C.; Colas, P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov. Today 2006, 11, 334–341, doi:10.1016/j.drudis.2006.02.007.
[55]
Wathes, R.; Moule, S.; Milojkovic, D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N. Engl. J. Med. 2013, 369, 197–198, doi:10.1056/NEJMc1302135.
[56]
Groner, B.; Weber, A.; Mack, L. Increasing the range of drug targets: Interacting peptides provide leads for the development of oncoprotein inhibitors. Bioengineered 2012, 3, 320–325, doi:10.4161/bioe.21272.
[57]
Bardou, C.; Borie, C.; Bickle, M.; Rudkin, B.B.; Colas, P. Peptide aptamers for small molecule drug discovery. Methods Mol. Biol. 2009, 535, 373–388, doi:10.1007/978-1-59745-557-2_21.