全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Drug Repositioning: An Opportunity to Develop Novel Treatments for Alzheimer’s Disease

DOI: 10.3390/ph6101304

Keywords: Alzheimer’s, repositioning, treatment, drug

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s Disease (AD) is the most common cause of dementia, affecting approximately two thirds of the 35 million people worldwide with the condition. Despite this, effective treatments are lacking, and there are no drugs that elicit disease modifying effects to improve outcome. There is an urgent need to develop and evaluate more effective pharmacological treatments. Drug repositioning offers an exciting opportunity to repurpose existing licensed treatments for use in AD, with the benefit of providing a far more rapid route to the clinic than through novel drug discovery approaches. This review outlines the current most promising candidates for repositioning in AD, their supporting evidence and their progress through trials to date. Furthermore, it begins to explore the potential of new transcriptomic and microarray techniques to consider the future of drug repositioning as a viable approach to drug discovery.

References

[1]  Wimo, A.; Prince, M. World Alzheimer Report 2010—The Global Economic Impact of Dementia. Available online: http://www.eldis.org/go/topics&id=56368&type=Document#.UlTiyqxX8n1 (accessed on 6 October 2013).
[2]  Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698–712, doi:10.1038/nrd3505.
[3]  Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet 2011, 377, 1019–1031, doi:10.1016/S0140-6736(10)61349-9.
[4]  Ballard, C.; Corbett, A.; Sharp, S. Aligning the evidence with practice: NICE guidelines for drug treatment of Alzheimer’s disease. Expert. Rev. Neurother. 2011, 11, 327–329, doi:10.1586/ern.11.13.
[5]  Wilcock, G.K.; Black, S.E.; Hendrix, S.B.; Zavitz, K.H.; Swabb, E.A.; Laughlin, M.A. Tarenflurbil Phase II Study investigators. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomised phase II trial. Lancet Neurol. 2008, 7, 483–493, doi:10.1016/S1474-4422(08)70090-5.
[6]  Green, R.C.; Schneider, L.S.; Amato, D.A.; Beelen, A.P.; Wilcock, G.; Swabb, E.A.; Zavitz, K.H.; Tarenflurbil Phase 3 Study Group. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA 2009, 302, 2557–2564, doi:10.1001/jama.2009.1866.
[7]  Zhang, S.; Hedskog, L.; Petersen, C.A.; Winblad, B.; Ankarcrona, M. Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death. J. Alzheimers. Dis. 2010, 21, 389–402.
[8]  D’Onofrio, G.; Panza, F.; Frisardi, V.; Solfrizzi, V.; Imbimbo, B.P.; Paroni, G.; Cascavilla, L.; Seripa, D.; Pilotto, A. Advances in the identification of gamma-secretase inhibitors for the treatment of Alzheimer’s disease. Expert. Opin. Drug Disco. 2012, 7, 19–37, doi:10.1517/17460441.2012.645534.
[9]  Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol. 2009, 9, 702–716.
[10]  Hoffmann-La Roche. A Study of Gantenerumab in Patients With Prodromal Alzheimer’s Disease. Available online: http://clinicaltrials.gov/ct2/show/NCT01224106 (accessed on 6 October 2013).
[11]  Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746, doi:10.1016/S1474-4422(07)70178-3.
[12]  Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data. Sci. Transl. Med. 2011, 3, 96ra77, doi:10.1126/scitranslmed.3001318.
[13]  Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683, doi:10.1038/nrd1468.
[14]  Hubsher, G.; Haider, M.; Okun, M.S. Amantadine: The journey from fighting flu to treating Parkinson disease. Neurology 2012, 78, 1096–1099, doi:10.1212/WNL.0b013e31824e8f0d.
[15]  Corbett, A.; Pickett, J.; Burns, A.; Corcoran, J.; Dunnett, S.B.; Edison, P.; Hagan, J.J.; Holmes, C.; Jones, E.; Katona, C.; et al. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov. 2012, 11, 833–846, doi:10.1038/nrd3869.
[16]  Schrijvers, E.M.; Witteman, J.C.; Sijbrands, E.J.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M. Insulin metabolism and the risk of Alzheimer disease: The Rotterdam Study. Neurology 2010, 75, 1982–1987, doi:10.1212/WNL.0b013e3181ffe4f6.
[17]  Moloney, A.M.; Griffin, R.J.; Timmons, S.; O’Connor, R.; Ravid, R.; O’Neill, C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 2010, 31, 224–243, doi:10.1016/j.neurobiolaging.2008.04.002.
[18]  Hoyer, S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J. Pharmacol. 2009, 490, 115–125, doi:10.1016/j.ejphar.2004.02.049.
[19]  Li, L.; H?lscher, C. Common pathological processes in Alzheimer Disease and Type 2 Diabetes: A review. Brain Res. Rev. 2007, 56, 384–402, doi:10.1016/j.brainresrev.2007.09.001.
[20]  Li, Z.G.; Zhang, W.; Sima, A.A. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007, 56, 1817–1824, doi:10.2337/db07-0171.
[21]  Carro, E.; Torres, A.I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur. J. Pharmacol. 2004, 490, 127–133, doi:10.1016/j.ejphar.2004.02.050.
[22]  Reger, M.A.; Watson, G.S.; Green, P.S.; Baker, L.D.; Cholerton, B.; Fishel, M.A.; Plymate, S.R.; Cherrier, M.M.; Schellenberg, G.D.; Frey, W.H., II.; Craft, S. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J. Alzheimers Dis. 2008, 13, 323–331.
[23]  Reger, M.A.; Watson, G.S.; Green, P.S.; Wilkinson, C.W.; Baker, L.D.; Cholerton, B.; Fishel, M.A.; Plymate, S.R.; Breitner, J.C.; DeGroodt, W.; et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 2008, 70, 440–448, doi:10.1212/01.WNL.0000265401.62434.36.
[24]  Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 2011, 68, 51–57, doi:10.1001/archneurol.2010.225.
[25]  Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol. 2012, 69, 29–38, doi:10.1001/archneurol.2011.233.
[26]  Kastin, A.J.; Akerstrom, V.; Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 2002, 18, 7–14, doi:10.1385/JMN:18:1-2:07.
[27]  Kastin, A.J.; Akerstrom, V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 313–318, doi:10.1038/sj.ijo.0802206.
[28]  McClean, P.; Pathasarthy, V.; Gault, V.; Holscher, C. Liraglutide, a novel GLP-1 analogue, prevents the impairment of learning and LTP in an APP/PS-1 mouse model of Alzheimer’s disease. In Presented at the Society for Neuroscience (SfN), San Diego, California, CA, USA, 13 November 2010.
[29]  Perry, T.; Lahiri, D.K.; Sambamurti, K.; Chen, D.; Mattson, M.P.; Egan, J.M.; Greig, N.H. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (A beta) levels and protects hippocampal neurons from death induced by A beta and iron. J. Neurosci. Res. 2003, 72, 603–612, doi:10.1002/jnr.10611.
[30]  Li, L.; Zhang, Z.F.; Holscher, C.; Gao, C.; Jiang, Y.H.; Liu, Y.Z. (Val8) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Euro. J. Pharmacol. 2012, 674, 280–286, doi:10.1016/j.ejphar.2011.11.005.
[31]  Wang, X.H.; Li, L.; H?lscher, C.; Pan, Y.F.; Chen, X.R.; Qi, J.S. Val8-glucagon-like peptide-1 protects against Aβ1–40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 2010, 170, 1239–1248, doi:10.1016/j.neuroscience.2010.08.028.
[32]  Radde, R.; Bolmont, T.; Kaeser, S.A.; Coomaraswamy, J.; Lindau, D.; Stoltze, L.; Calhoun, M.E.; J?ggi, F.; Wolburg, H.; Gengler, S.; et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006, 7, 940–946, doi:10.1038/sj.embor.7400784.
[33]  Gengler, S.; McClean, P.L.; McCurtin, R.; Gault, V.A.; H?lscher, C. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol. Aging 2012, 33, 265–276, doi:10.1016/j.neurobiolaging.2010.02.014.
[34]  McClean, P.L.; Parthsarathy, V.; Faivre, E.; H?lscher, C. The Diabetes Drug Liraglutide Prevents Degenerative Processes in a Mouse Model of Alzheimer’s Disease. J. Neurosci. 2011, 31, 6587–6594, doi:10.1523/JNEUROSCI.0529-11.2011.
[35]  Hamilton, A.; Patterson, S.; Porter, D.; Gault, V.A.; H?lscher, C. Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J. Neurosci. Res. 2011, 89, 481–489, doi:10.1002/jnr.22565.
[36]  Astrup, A.; R?ssner, S.; van Gaal, L.; Rissanen, A.; Niskanen, L.; Al-Hakim, M.; Madsen, J.; Rasmussen, M.F.; Lean, M.E.J. Effects of liraglutide in the treatment of obesity: A randomised, double-blind, placebo-controlled study. Lancet 2009, 374, 1606–1616, doi:10.1016/S0140-6736(09)61375-1.
[37]  Yoshitake, T.; Kiyohara, Y.; Kato, I.; Ohmura, T.; Iwamoto, H.; Nakayama, K.; Ohmori, S.; Nomiyama, K.; Kawano, H.; Ueda, K.; et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: the Hisayama Study. Neurology 1995, 45, 1161–1168, doi:10.1212/WNL.45.6.1161.
[38]  Skoog, I.; Lernfelt, B.; Landahl, S.; Palmertz, B.; Andreasson, L.A.; Nilsson, L.; Persson, G.; Odén, A.; Svanborg, A. 15-year longitudinal study of blood pressure and dementia. Lancet 1996, 347, 1141–1145, doi:10.1016/S0140-6736(96)90608-X.
[39]  Launer, L.J.; Ross, G.W.; Petrovitch, H.; Masaki, K.; Foley, D.; White, L.R.; Havlik, R.J. Midlife blood pressure and dementia: The Honolulu-Asia aging study. Neurobiol. Aging 2000, 21, 49–55.
[40]  Posner, H.B.; Tang, M.X.; Luchsinger, J.; Lantigua, R.; Stern, Y.; Mayeux, R. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology 2002, 58, 1175–1181, doi:10.1212/WNL.58.8.1175.
[41]  Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005, 4, 487–499, doi:10.1016/S1474-4422(05)70141-1.
[42]  Dickstein, D.L.; Walsh, J.; Brautigam, H.; Stockton, S.D., Jr.; Gandy, S.; Hof, P.R. Role of Vascular Risk Factors and Vascular Dysfunction in Alzheimer’s Disease. Mt. Sinai J. Med. 2010, 77, 82–102, doi:10.1002/msj.20155.
[43]  Snowdon, D.A.; Greiner, L.H.; Mortimer, J.A.; Riley, K.P.; Greiner, P.A.; Markesbery, W.R. Brain infarction and the clinical expression of Alzheimer disease—The nun study. JAMA 1997, 277, 813–817, doi:10.1001/jama.1997.03540340047031.
[44]  Kehoe, P.G.; Passmore, P.A. The renin-angiotensin system and antihypertensive drugs in Alzheimer’s disease: Current standing of the angiotensin hypothesis? J. Alzheimers Dis. 2012, 30, S251–S268.
[45]  Kehoe, P.G.; Miners, S.; Love, S. Angiotensins in Alzheimer’s disease—Friend or foe? Trends Neurosci. 2009, 32, 619–628, doi:10.1016/j.tins.2009.07.006.
[46]  Wright, J.W.; Harding, J.W. Brain renin-angiotensin-A new look at an old system. Prog. Neurobiol. 2011, 95, 49–67, doi:10.1016/j.pneurobio.2011.07.001.
[47]  Culman, J.; Blume, A.; Gohlke, P.; Unger, T. The renin-angiotensin system in the brain: Possible therapeutic implications for AT(1)-receptor blockers. J. Hum. Hypertens. 2002, 16, S64–S70.
[48]  Wang, J.; Ho, L.; Chen, L.; Zhao, Z.; Zhao, W.; Qian, X.; Humala, N.; Seror, I.; Bartholomew, S.; Rosendorff, C.; Pasinetti, G.M. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest. 2007, 117, 3393–3402, doi:10.1172/JCI31547.
[49]  Ferrington, L.; Miners, J.S.; Palmer, L.E.; Bond, S.M.; Povey, J.E.; Kelly, P.A.; Love, S.; Horsburgh, K.J.; Kehoe, P.G. Angiotensin II-inhibiting drugs have no effect on intraneuronal Abeta or oligomeric Abeta levels in a triple transgenic mouse model of Alzheimer’s disease. Am. Transl. Res. 2011, 3, 197–208.
[50]  Mogi, M.; Li, J.M.; Tsukuda, K.; Iwanami, J.; Min, L.J.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem. Biophys. Res. Commun. 2008, 375, 446–449, doi:10.1016/j.bbrc.2008.08.032.
[51]  Danielyan, L.; Klein, R.; Hanson, L.R.; Buadze, M.; Schwab, M.; Gleiter, C.H.; Frey, W.H. Protective Effects of Intranasal Losartan in the APP/PS1 Transgenic Mouse Model of Alzheimer Disease. Rejuvenation Res. 2010, 13, 195–201, doi:10.1089/rej.2009.0944.
[52]  Li, N.C.; Lee, A.; Whitmer, R.A.; Kivipelto, M.; Lawler, E.; Kazis, L.E.; Wolozin, B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis. BMJ 2010, 12, b5465.
[53]  Davies, N.; Kehoe, P.; Ben-Shlomo, Y.; Martin, R. Associations Of Angiotensin-Ii Receptor Blockers And Ace Inhibitors With Alzheimer’s Disease: A Nested Case-Control Study Within The Uk General Practice Research Database. J. Epidemiol. Community Health 2011, 65, A45.
[54]  Anderson, C.; Teo, K.; Gao, P.; Arima, H.; Dans, A.; Unger, T.; Commerford, P.; Dyal, L.; Schumacher, H.; Pogue, J.; et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: Analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011, 10, 43–53, doi:10.1016/S1474-4422(10)70250-7.
[55]  Lithell, H.; Hansson, L.; Skoog, I.; Elmfeldt, D.; Hofman, A.; Olofsson, B.; Trenkwalder, P.; Zanchetti, A. The Study on cognition and prognosis in the elderly (SCOPE): Principal results of a randomized double-blind intervention trial. J. Hypertens. 2003, 21, 875–886, doi:10.1097/00004872-200305000-00011.
[56]  Skoog, I.; Lithell, H.; Hansson, L.; Elmfeldt, D.; Hofman, A.; Olofsson, B.; Trenkwalder, P.; Zanchetti, A. Effect of baseline cognitive function and anti hypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE). Am. J. Hypertens. 2005, 18, 1052–1059, doi:10.1016/j.amjhyper.2005.02.013.
[57]  Landmark, K.; Forsman, M.; Lindberg, K.; Ryman, T.; Martmann-Moe, K.; Haaverstad, S.; Wiel, S. Nitrendipine And Mefruside In Elderly Hypertensives—Effects On Blood-Pressure, Cardiac-Output, Cerebral Blood-Flow And Metabolic Parameters. J. Hum. Hypertens. 1995, 9, 281–285.
[58]  Hanyu, H.; Hirao, K.; Shimizu, S.; Iwamoto, T.; Koizumi, K.; Abe, K. Favourable effects of nilvadipine on cognitive function and regional cerebral blood flow on SPECT in hypertensive patients with mild cognitive impairment. Nucl. Med. Commun. 2007, 28, 281–287, doi:10.1097/MNM.0b013e32804c58aa.
[59]  Forsman, M.; Olsnes, B.T.; Semb, G.; Steen, P.A. Effects Of Nimodipine On Cerebral Blood-Flow And Neuropsychological Outcome After Cardiac-Surgery. Br. J. Anaesth. 1990, 65, 514–520, doi:10.1093/bja/65.4.514.
[60]  Zhao, W.; Wang, J.; Ho, L.; Ono, K.; Teplow, D.B.; Pasinetti, G.M. Identification of Antihypertensive Drugs Which Inhibit Amyloid-beta Protein Oligomerization. J. Alzheimers Dis. 2009, 16, 49–57.
[61]  Bachmeier, C.; Beaulieu-Abdelahad, D.; Mullan, M.; Paris, D. Selective dihydropyiridine compounds facilitate the clearance of beta-amyloid across the blood-brain barrier. Eur. J. Pharmacol. 2011, 659, 124–129, doi:10.1016/j.ejphar.2011.03.048.
[62]  Anekonda, T.S.; Quinn, J.F.; Harris, C.; Frahler, K.; Wadsworth, T.L.; Woltjer, R.L. L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol. Dis. 2011, 41, 62–70, doi:10.1016/j.nbd.2010.08.020.
[63]  Li, N.; Liu, B.; Dluzen, D.E.; Jin, Y. Protective effects of ginsenoside Rg(2) against glutamate-induced neurotoxicity in PC12 cells. J. Ethnopharmacol. 2007, 111, 458–463.
[64]  Paris, D.; Bachmeier, C.; Patel, N.; Quadros, A.; Volmar, C.H.; Laporte, V.; Ganey, J.; Beaulieu-Abdelahad, D.; Ait-Ghezala, G.; Crawford, F.; Mullan, M.J. Selective Antihypertensive Dihydropyridines Lower A beta Accumulation by Targeting both the Production and the Clearance of A beta across the Blood-Brain Barrier. Mol. Med. 2011, 17, 149–162.
[65]  Iwasaki, K.; Egashira, N.; Takagaki, Y.; Yoshimitsu, Y.; Hatip-Al-Khatib, I.; Mishima, K.; Fujiwara, M. Nilvadipine prevents the impairment of spatial memory induced by cerebral ischemia combined with beta-amyloid in rats. Bio. Pharm. Bull. 2007, 30, 698–701, doi:10.1248/bpb.30.698.
[66]  Copenhaver, P.F.; Anekonda, T.S.; Musashe, D.; Robinson, K.M.; Ramaker, J.M.; Swanson, T.L.; Wadsworth, T.L.; Kretzschmar, D.; Woltjer, R.L.; Quinn, J.F. A translational continuum of model systems for evaluating treatment strategies in Alzheimer’s disease: Isradipine as a candidate drug. Dis. Model. Mech. 2011, 4, 634–648, doi:10.1242/dmm.006841.
[67]  Lopez-Arrieta, J.M.; Birks, J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst. Rev. 2002, 3, CD000147.
[68]  Morich, F.J.; Bieber, F.; Lewis, J.M.; Kaiser, L.; Cutler, N.R.; Escobar, J.I.; Willmer, J.; Petersen, R.C.; Reisberg, B. Nimodipine in the treatment of probable Alzheimer’s disease. Results of two multicentre trials. Clin. Drug Invest. 1996, 11, 185–195, doi:10.2165/00044011-199611040-00001.
[69]  Kennelly, S.P.; Abdullah, L.; Paris, D.; Parish, J.; Mathura, V.; Mullan, M.; Crawford, F.; Lawlor, B.A.; Kenny, R.A. Demonstration of safety in Alzheimer’s patients for intervention with an anti-hypertensive drug Nilvadipine: Results from a 6-week open label study. Int. J. Geriatr. Psychiatry 2011, 26, 1038–1045, doi:10.1002/gps.2638.
[70]  Kennelly, S.; Abdullah, L.; Kenny, R.A.; Mathura, V.; Luis, C.A.; Mouzon, B.; Crawford, F.; Mullan, M.; Lawlor, B. Apolipoprotein E genotype-specific short-term cognitive benefits of treatment with the antihypertensive nilvadipine in Alzheimer’s patients—An open-label trial. Int. J. Geriatr. Psychiatry 2012, 27, 415–422.
[71]  Khachaturian, A.S.; Zandi, P.P.; Lyketsos, C.G.; Hayden, K.M.; Skoog, I.; Norton, M.C.; Tschanz, J.T.; Mayer, L.S.; Welsh-Bohmer, K.A.; Breitner, J.C. Antihypertensive medication use and incident Alzheimer disease—The Cache County Study. Arch. Neurol. 2006, 63, 686–692, doi:10.1001/archneur.63.5.noc60013.
[72]  Forette, F.; Seux, M.L.; Staessen, J.A.; Thijs, L.; Babarskiene, M.R.; Babeanu, S.; Bossini, A.; Fagard, R.; Gil-Extremera, B.; Laks, T.; et al. The prevention of dementia with antihypertensive treatment: New evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch. Int. Med. 2002, 162, 2046–2052, doi:10.1001/archinte.162.18.2046.
[73]  Forloni, G.; Colombo, L.; Girola, L.; Tagliavini, F.; Salmona, M. Anti-amyloidogenic activity of tetracyclines: Studies in vitro. FEBS Lett. 2001, 487, 404–407, doi:10.1016/S0014-5793(00)02380-2.
[74]  Ryu, J.K.; Franciosi, S.; Sattayaprasert, P.; Kim, S.U.; McLarnon, J.G. Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 2004, 48, 85–90, doi:10.1002/glia.20051.
[75]  Fan, R.; Xu, F.; Previti, M.L.; Davis, J.; Grande, A.M.; Robinson, J.K.; van Nostrand, W.E. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J. Neurosci. 2007, 27, 3057–3063, doi:10.1523/JNEUROSCI.4371-06.2007.
[76]  Parachikova, A.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M.; Green, K.N. Reductions in Amyloid-beta-Derived Neuroinflammation, with Minocycline, Restore Cognition but do not Significantly Affect Tau Hyperphosphorylation. J. Alzheimers. Dis. 2010, 21, 527–542.
[77]  Cuello, A.C.; Ferretti, M.T.; Leon, W.C.; Iulita, M.F.; Melis, T.; Ducatenzeiler, A.; Bruno, M.A.; Canneva, F. Early-Stage Inflammation and Experimental Therapy in Transgenic Models of the Alzheimer-Like Amyloid Pathology. Neurodegener. Dis. 2010, 7, 96–98, doi:10.1159/000285514.
[78]  Cai, Z.Y.; Zhao, Y.; Yao, S.T.; Zhao, B. Increases in beta-amyloid protein in the hippocampus caused by diabetic metabolic disorder are blocked by minocycline through inhibition of NF-kappa B pathway activation. Pharmacol. Rep. 2011, 63, 381–391.
[79]  Garcia-Alloza, M.; Prada, C.; Lattarulo, C.; Fine, S.; Borrelli, L.A.; Betensky, R.; Greenberg, S.M.; Frosch, M.P.; Bacskai, B.J. Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vitro in transgenic mice. J. Neurochem. 2009, 109, 1636–1647, doi:10.1111/j.1471-4159.2009.06096.x.
[80]  Malm, T.M.; Magga, J.; Kuh, G.F.; Vatanen, T.; Koistinaho, M.; Koistinaho, J. Minocycline Reduces Engraftment and Activation of Bone Marrow-Derived Cells but Sustains Their Phagocytic Activity in a Mouse Model of Alzheimer’s Disease. Glia 2008, 56, 1767–1779, doi:10.1002/glia.20726.
[81]  Gordon, P.H.; Moore, D.H.; Miller, R.G.; Florence, J.M.; Verheijde, J.L.; Doorish, C.; Hilton, J.F.; Spitalny, G.M.; MacArthur, R.B.; Mitsumoto, H.; et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: A phase III randomised trial. Lancet. Neurol. 2007, 6, 1045–1053, doi:10.1016/S1474-4422(07)70270-3.
[82]  Bonelli, R.M.; Heuberger, C.; Reisecker, F. Minocycline for Huntington’s disease: An open label study. Neurology 2003, 60, 883–884, doi:10.1212/01.WNL.0000049936.85487.7A.
[83]  Bonelli, R.M.; Hodl, A.K.; Hofmann, P.; Kapfhammer, H.P. Neuroprotection in Huntingtons disease: A 2-year study on minocycline. Int. Clin. Psychopharmacol. 2004, 19, 337–342, doi:10.1097/00004850-200411000-00004.
[84]  Thomas, M.; Ashizawa, T.; Jankovic, J. Minocycline in Huntington’s disease: A pilot study. Mov. Disord. 2004, 19, 692–695, doi:10.1002/mds.20018.
[85]  The NINDS NET-PD Investigators. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-Month results. Clin. Neuropharmacol. 2008, 31, 141–150, doi:10.1097/WNF.0b013e3181342f32.
[86]  Zhang, Y.H.; Raymick, J.; Sarkar, S.; Lahiri, D.K.; Ray, B.; Holtzman, D.; Dumas, M.; Schmued, L.C. Efficacy and toxicity ofclioquinoltreatment and A-β42 inoculation in the APP/PSI mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 2013, 10, 494–506, doi:10.2174/1567205011310050005.
[87]  Sampson, E.L.; Jenagaratnam, L.; McShane, R. Metal protein attenuating compounds for the treatment of Alzheimer’s dementia. Cochrane Database Syst Rev. 2012, doi:10.1002/14651858.CD005380.pub3.
[88]  Goodman, A.B.; Pardee, A.B. Evidence for defective retinoid transport and function in late onset Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 2901–2905, doi:10.1073/pnas.0437937100.
[89]  Corcoran, J.P.T.; So, P.L.; Maden, M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur. J. Neurosci. 2004, 20, 896–902, doi:10.1111/j.1460-9568.2004.03563.x.
[90]  Husson, M.; Enderlin, V.; Delacourte, A.; Ghenimi, N.; Alfos, S.; Pallet, V.; Higueret, P. Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol. Dis. 2006, 23, 1–10, doi:10.1016/j.nbd.2006.01.008.
[91]  Melino, G.; Draoui, M.; Bernardini, S.; Bellincampi, L.; Reichert, U.; Cohen, P. Regulation by retinoic acid of insulin-degrading enzyme and of a related endoprotease in human neuroblastoma cell lines. Cell. Growth Differ. 1996, 7, 787–796.
[92]  So, P.L.; Yip, P.K.; Bunting, S.; Wong, L.F.; Mazarakis, N.D.; Hall, S.; McMahon, S.; Maden, M.; Corcoran, J.P. Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev. Biol. 2006, 298, 167–175, doi:10.1016/j.ydbio.2006.06.027.
[93]  Lee, H.P.; Casadesus, G.; Zhu, X.; Lee, H.G.; Perry, G.; Smith, M.A.; Gustaw-Rothenberg, K.; Lerner, A. All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease. Expert Rev. Neurother. 2009, 9, 1615–1621, doi:10.1586/ern.09.86.
[94]  Shudo, K.; Fukasawa, H.; Nakagomi, M.; Yamagata, N. Towards Retinoid Therapy for Alzheimer’s Disease. Curr. Alzheimer Res. 2009, 6, 302–311, doi:10.2174/156720509788486581.
[95]  Ding, Y.; Qiao, A.; Wang, Z.; Goodwin, J.S.; Lee, E.S.; Block, M.L.; Allsbrook, M.; McDonald, M.P.; Fan, G.H. Retinoic Acid Attenuates beta-Amyloid Deposition and Rescues Memory Deficits in an Alzheimer’s Disease Transgenic Mouse Model. J. Neurosci. 2008, 28, 11622–11634, doi:10.1523/JNEUROSCI.3153-08.2008.
[96]  Tippmann, F.; Hundt, J.; Schneider, A.; Endres, K.; Fahrenholz, F. Up-regulation of the α-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J. 2009, 23, 1643–1654, doi:10.1096/fj.08-121392.
[97]  Kawahara, K.; Nishi, K.; Suenobu, M.; Ohtsuka, H.; Maeda, A.; Nagatomo, K.; Kuniyasu, A.; Staufenbiel, M.; Nakagomi, M.; Shudo, K.; Nakayama, H. Oral Administration of Synthetic Retinoid Am80 (Tamibarotene) Decreases Brain beta-Amyloid Peptides in APP23 Mice. Biol. Pharm. Bull. 2009, 32, 1307–1309, doi:10.1248/bpb.32.1307.
[98]  Cramer, P.E.; Cirrito, J.R.; Wesson, D.W.; Lee, C.Y.; Karlo, J.C.; Zinn, A.E.; Casali, B.T.; Restivo, J.L.; Goebel, W.D.; James, M.J.; et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 2012, 335, 1503–1506, doi:10.1126/science.1217697.
[99]  Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935, doi:10.1126/science.1132939.
[100]  Wei, G.; Twomey, D.; Lamb, J.; Schlis, K.; Agarwal, J.; Stam, R.W.; Opferman, J.T.; Sallan, S.E.; den Boer, M.L.; Pieters, R.; et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cells 2006, 10, 331–342, doi:10.1016/j.ccr.2006.09.006.
[101]  Williams, G. A searchable cross-platform gene expression database reveals connections between drug treatments and disease. BMC Genomics 2012, 13, 12, doi:10.1186/1471-2164-13-12.
[102]  Guo, D.J.; Li, F.; Yu, P.H.; Chan, S.W. Neuroprotective effects of luteolin against apoptosis induced by 6-hydroxydopamine on rat pheochromocytoma PC12 cells. Pharm. Biol. 2013, 51, 190–196, doi:10.3109/13880209.2012.716852.
[103]  Taupin, P. Apigenin and related compounds stimulate adult neurogenesis. Mars, Inc., the Salk Institute for Biological Studies: WO2008147483. Expert Opin. Ther. Pat. 2009, 19, 523–527, doi:10.1517/13543770902721279.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133