全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2013 

Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

DOI: 10.3390/pathogens2020383

Keywords: Burkholderia mallei, CpG, immunomodulation, in vivo imaging, infrared fluorescent imaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

References

[1]  Lehavi, O.; Aizenstien, O.; Katz, L.H.; Hourvitz, A. Glanders–a potential disease for biological warfare in humans and animals. Harefuah 2002, 141, 119.
[2]  Neubauer, H.; Sprague, L.D.; Zacharia, R.; Tomaso, H.; Al Dahouk, S.; Wernery, R.; Wernery, U.; Scholz, H.C. Serodiagnosis of Burkholderia mallei infections in horses: State-of-the-art and perspectives. J. Vet. Med. B Infect. Dis Vet. Public Health 2005, 52, 201–205, doi:10.1111/j.1439-0450.2005.00855.x.
[3]  Whitlock, G.C.; Estes, D.M.; Torres, A.G. Glanders: Off to the races with Burkholderia mallei. FEMS Microbiol. Lett. 2007, 277, 115–122, doi:10.1111/j.1574-6968.2007.00949.x.
[4]  Khaki, P.; Mosavari, N.; Khajeh, N.S.; Emam, M.; Ahouran, M.; Hashemi, S.; Taheri, M.M.; Jahanpeyma, D.; Nikkhah, S. Glanders outbreak at Tehran Zoo, Iran. Iran J. Microbiol. 2012, 4, 3–7.
[5]  Malik, P.; Singha, H.; Khurana, S.K.; Kumar, R.; Kumar, S.; Raut, A.A.; Riyesh, T.; Vaid, R.K.; Virmani, N.; Singh, B.K.; et al. Emergence and re-emergence of glanders in India: A description of outbreaks from 2006 to 2011. Vet. Ital. 2012, 48, 167–178.
[6]  Wernery, U.; Wernery, R.; Joseph, M.; Al-Salloom, F.; Johnson, B.; Kinne, J.; Jose, S.; Jose, S.; Tappendorf, B.; Hornstra, H.; et al. Natural Burkholderia mallei infection in dromedary, Bahrain. Emerg. Infect. Dis. 2011, 17, 1277–1279, doi:10.3201/eid1707.110222.
[7]  De Carvalho Filho, M.B.; Ramos, R.M.; Fonseca, A.A.J.; de Lima Orzil, L.; Sales, M.L.; de Assis Santana, V.L.; de Souza, M.M.; Dos Reis Machado, E.; Filho, P.R.; Leite, R.C.; et al. Development and validation of a method for purification of mallein for the diagnosis of glanders in equines. BMC Vet. Res. 2012, 8, 154, doi:10.1186/1746-6148-8-154.
[8]  Ansari, M.; Minou, M. Two cases of chronic human glanders treated with sulfonamides. Ann. Inst. Pasteur (Paris) 1951, 81, 98–102.
[9]  Deitchman, S.; Sokas, R. Glanders in a military research microbiologist. N. Engl. J. Med. 2001, 345, 1644.
[10]  Acute glanders in the human subject. Prov. Med. J. Retrosp. Med. Sci. 1843, 6, 433–435.
[11]  Coleman, W.; Ewing, J. A case of septicemic glanders in the human subject. J. Med. Res. 1903, 9, 223–240.
[12]  Howe, C.; Miller, W.R. Human glanders; report of six cases. Ann. Intern. Med. 1947, 26, 93–115, doi:10.7326/0003-4819-26-1-93.
[13]  Estes, D.M.; Dow, S.W.; Schweizer, H.P.; Torres, A.G. Present and future therapeutic strategies for melioidosis and glanders. Exp. Rev. Anti Infect. Ther. 2010, 8, 325–338, doi:10.1586/eri.10.4.
[14]  Easton, A.; Haque, A.; Chu, K.; Patel, N.; Lukaszewski, R.A.; Krieg, A.M.; Titball, R.W.; Bancroft, G.J. Combining vaccination and postexposure CpG therapy provides optimal protection against lethal sepsis in a biodefense model of human melioidosis. J. Infect. Dis. 2011, 204, 636–644.
[15]  Judy, B.M.; Taylor, K.; Deeraksa, A.; Johnston, R.K.; Endsley, J.J.; Vijayakumar, S.; Aronson, J.F.; Estes, D.M.; Torres, A.G. Prophylactic application of CpG oligonucleotides augments the early host response and confers protection in acute melioidosis. PLoS One 2012, 7, e34176, doi:10.1371/journal.pone.0034176.
[16]  Rozak, D.A.; Gelhaus, H.C.; Smith, M.; Zadeh, M.; Huzella, L.; Waag, D.; Adamovicz, J.J. CpG oligodeoxyribonucleotides protect mice from Burkholderia pseudomallei but not Francisella tularensis Schu S4 aerosols. J. Immune Based Ther. Vaccines 2010, 8, 2, doi:10.1186/1476-8518-8-2.
[17]  Waag, D.M.; McCluskie, M.J.; Zhang, N.; Krieg, A.M. A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei. Infect. Immun. 2006, 74, 1944–1948, doi:10.1128/IAI.74.3.1944-1948.2006.
[18]  Wongratanacheewin, S.; Kespichayawattana, W.; Intachote, P.; Pichyangkul, S.; Sermswan, R.W.; Krieg, A.M.; Sirisinha, S. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect. Immun. 2004, 72, 4494–4502, doi:10.1128/IAI.72.8.4494-4502.2004.
[19]  Elkins, K.L.; Rhinehart-Jones, T.R.; Stibitz, S.; Conover, J.S.; Klinman, D.M. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 1999, 162, 2291–2298.
[20]  Becker, Y. CpG ODNs treatments of HIV-1 infected patients may cause the decline of transmission in high risk populations–a review, hypothesis and implications. Virus Genes 2005, 30, 251–266, doi:10.1007/s11262-004-5632-2.
[21]  Deng, J.C.; Moore, T.A.; Newstead, M.W.; Zeng, X.; Krieg, A.M.; Standiford, T.J. CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J. Immunol. 2004, 173, 5148–5155.
[22]  Hickey, A.J.; Lin, J.S.; Kummer, L.W.; Szaba, F.M.; Duso, D.K.; Tighe, M.; Parent, M.A.; Smiley, S.T. Intranasal prophylaxis with CpG oligodeoxynucleotide can protect against Yersinia pestis infection. Infect. Immun. 2013, 81, 2123–2132, doi:10.1128/IAI.00316-13.
[23]  Klinman, D.M.; Conover, J.; Coban, C. Repeated administration of synthetic oligodeoxynucleotides expressing CpG motifs provides long-term protection against bacterial infection. Infect. Immun. 1999, 67, 5658–5663.
[24]  Pun, P.B.; Bhat, A.A.; Mohan, T.; Kulkarni, S.; Paranjape, R.; Rao, D.N. Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. Int. Immunopharmacol. 2009, 9, 468–477, doi:10.1016/j.intimp.2009.01.012.
[25]  Ray, N.B.; Krieg, A.M. Oral pretreatment of mice with CpG DNA reduces susceptibility to oral or intraperitoneal challenge with virulent Listeria monocytogenes. Infect. Immun. 2003, 71, 4398–4404, doi:10.1128/IAI.71.8.4398-4404.2003.
[26]  Yamaguchi, Y.; Harker, J.A.; Wang, B.; Openshaw, P.J.; Tregoning, J.S.; Culley, F.J. Preexposure to CpG protects against the delayed effects of neonatal respiratory syncytial virus infection. J. Virol. 2012, 86, 10456–10461.
[27]  Liu, Y.; Luo, X.; Yang, C.; Yu, S.; Xu, H. Three CpG oligodeoxynucleotide classes differentially enhance antigen-specific humoral and cellular immune responses in mice. Vaccine 2011, 29, 5778–5784, doi:10.1016/j.vaccine.2011.05.087.
[28]  Cooper, C.L.; Ahluwalia, N.K.; Efler, S.M.; Vollmer, J.; Krieg, A.M.; Davis, H.L. Immunostimulatory effects of three classes of CpG oligodeoxynucleotides on PBMC from HCV chronic carriers. J. Immune Based Ther. Vaccines 2008, 6, 3, doi:10.1186/1476-8518-6-3.
[29]  Ballas, Z.K.; Rasmussen, W.L.; Krieg, A.M. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 1996, 157, 1840–1845.
[30]  Asselin-Paturel, C.; Brizard, G.; Chemin, K.; Boonstra, A.; O'Garra, A.; Vicari, A.; Trinchieri, G. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 2005, 201, 1157–1167, doi:10.1084/jem.20041930.
[31]  Gursel, M.; Verthelyi, D.; Gürsel, I.; Ishii, K.J.; Klinman, D.M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc Biol. 2002, 71, 813–820.
[32]  Krug, A.; Rothenfusser, S.; Hornung, V.; Jahrsd?rfer, B.; Blackwell, S.; Ballas, Z.K.; Endres, S.; Krieg, A.M.; Hartmann, G. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol. 2001, 31, 2154–2163, doi:10.1002/1521-4141(200107)31:7<2154::AID-IMMU2154>3.0.CO;2-U.
[33]  Vollmer, J.; Weeratna, R.; Payette, P.; Jurk, M.; Schetter, C.; Laucht, M.; Wader, T.; Tluk, S.; Liu, M.; Davis, H.L.; et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol. 2004, 34, 251–262, doi:10.1002/eji.200324032.
[34]  Bernasconi, N.L.; Onai, N.; Lanzavecchia, A. A role for toll-like receptors in acquired immunity: Up-regulation of TLR9 by BDR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003, 101, 4500–4504, doi:10.1182/blood-2002-11-3569.
[35]  Hartmann, G.; Battiany, J.; Poeck, H.; Wagner, M.; Kerkmann, M.; Lubenow, N.; Rothenfusser, S.; Endres, S. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur. J. Immunol. 2003, 33, 1633–1641, doi:10.1002/eji.200323813.
[36]  Marshall, J.D.; Fearon, K.; Abbate, C.; Subramanian, S.; Yee, P.; Gregorio, J.; Coffman, R.L.; Van Nest, G. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc Biol. 2003, 73, 781–792, doi:10.1189/jlb.1202630.
[37]  Galyov, E.E.; Brett, P.J.; Deshazer, D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu. Rev. Microbiol. 2010, 64, 495–517, doi:10.1146/annurev.micro.112408.134030.
[38]  Massey, S.; Johnston, K.; Mott, T.M.; Judy, B.M.; Kvitko, B.H.; Schweizer, H.P.; Estes, D.M.; Torres, A.G. In vivo bioluminescence imaging of Burkholderia mallei respiratory infection and treatment in the mouse model. Front. Microbiol. 2011, 2, 174.
[39]  Deng, J.C.; Moore, T.A.; Newstead, M.W.; Zeng, X.; Krieg, A.M.; Standiford, T.J. Cpg oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J. Immunol. 2004, 173, 5148–5155.
[40]  Puangpetch, A.; Anderson, R.; Huang, Y.Y.; Sermswan, R.W.; Chaicumpa, W.; Sirisinha, S.; Wongratanacheewin, S. Cationic liposomes extend the immunostimulatory effect of CpG oligodeoxynucleotide against Burkholderia pseudomallei infection in BALB/c mice. Clin. Vaccine Immunol. 2012, 19, 675–683, doi:10.1128/CVI.05545-11.
[41]  Utaisincharoen, P.; Kespichayawattana, W.; Anuntagool, N.; Chaisuriya, P.; Pichyangkul, S.; Krieg, A.M.; Sirisinha, S. CpG ODN enhances uptake of bacteria by mouse macrophages. Clin. Exp. Immunol. 2003, 132, 70–75, doi:10.1046/j.1365-2249.2003.02107.x.
[42]  Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 2002, 20, 709–760, doi:10.1146/annurev.immunol.20.100301.064842.
[43]  Bondi, S.K.; Goldberg, J.B. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei. Expert Rev. Vaccines 2008, 7, 1357–1365, doi:10.1586/14760584.7.9.1357.
[44]  Wedlock, D.N.; Denis, M.; Skinner, M.A.; Koach, J.; de Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; Hecker, R.; et al. Vaccination of cattle with a CpG oligodeoxynucleotide-formulated mycobacterial protein vaccine and Mycobacterium bovis BCG induces levels of protection against bovine tuberculosis superior to those induced by vaccination with BCG alone. Infect. Immun. 2005, 73, 3540–3546, doi:10.1128/IAI.73.6.3540-3546.2005.
[45]  Ren, T.; Liang, Y.J.; Cai, Y.Y.; Li, C.Y.; Mei, J.; Yuan, Z.H.; Tao, M.F.; Tian, M.; Zhao, B. A study on the mechanisms of mycobacterial clearance induced by CpG-oligodeoxynucleotides in mice. Zhonghua Jie He He Hu Xi Za Zhi 2008, 31, 46–50.
[46]  Appelberg, R. Neutrophils and intracellular pathogens: Beyond phagocytosis and killing. Trends Microbiol. 2007, 15, 87–92, doi:10.1016/j.tim.2006.11.009.
[47]  Kumar, V.; Sharma, A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 2010, 10, 1325–1334, doi:10.1016/j.intimp.2010.08.012.
[48]  Xiao, L.; Zhang, Y.; Liu, Z.; Yang, M.; Pu, L.; Pan, D. Synthesis of the cyanine 7 labeled neutrophil-specific agents for noninvasive near infrared fluorescence imaging. Bioorg. Med. Chem. Lett. 2010, 20, 3515–3517, doi:10.1016/j.bmcl.2010.04.136.
[49]  Blasi, F.; Tarsia, P.; Aliberti, S. Strategic targets of essential host-pathogen interactions. Respiration 2005, 72, 9–25, doi:10.1159/000083394.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133