The Effects of Acute Post Exercise Consumption of Two Cocoa-Based Beverages with Varying Flavanol Content on Indices of Muscle Recovery Following Downhill Treadmill Running
Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO 2max 64.4 ± 7.6 mL/kg/min) completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer) time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving) immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference ( p = 0.97) between trials for 5 K completion time (CHOC 1198.3 ± 160.6 s, CocoaCHOC 1195.5 ± 148.8 s). No significant difference was found for creatine kinase (CK) levels ( p = 0.31), or muscle soreness ( p = 0.21) between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits.
References
[1]
Jowko, E.; Sacharuk, J.; Balasinska, B.; Ostaszewski, M.C.; Charmas, R. Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr. Res. 2011, 31, 813–821.
[2]
McBrier, N.M.; Vairo, G.L.; Bagshaw, D.; Lekan, J.M.; Bordi, P.L.; Kris-Etherton, P.M. Cocoa-based protein and carbohydrate drink decreases perceived soreness after exhaustive aerobic exercise: A pragmatic preliminary analysis. J. Strength Cond. Res. 2010, 24, 2203–2210, doi:10.1519/JSC.0b013e3181e4f7f9.
[3]
Morillas-Ruiz, J.M.; Villegas Garcia, J.A.; Lopez, F.J.; Vidal-Guevara, M.L.; Zafrilla, P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin. Nutr. 2006, 25, 444–453, doi:10.1016/j.clnu.2005.11.007.
[4]
Nishizawa, M.; Hara, T.; Miura, T.; Fujita, S.; Yoshigai, E.; Ue, H.; Hayashi, Y.; Kwon, A.; Okumura, T.; Isaka, T. Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phytother. Res. 2011, 25, 1486–1493, doi:10.1002/ptr.3430.
[5]
McGinley, C.; Shafat, A.; Donnelly, A.E. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 2009, 39, 1011–1032, doi:10.2165/11317890-000000000-00000.
[6]
Peake, J.M.; Suzuki, K.; Coombes, J.S. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 2006, 18, 357–371, doi:10.1016/j.jnutbio.2006.10.005.
[7]
Powers, S.K.; DeRuisseau, K.C.; Quindry, J.; Hamilton, K.L. Dietary antioxidants and exercise. J. Sports Sci. 2004, 22, 81–94, doi:10.1080/0264041031000140563.
[8]
McLeay, Y.; Barnes, M.J.; Mundel, T.; Hurst, S.M.; Hurst, R.D.; Stannard, S.R. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2012, 9, 1–12, doi:10.1186/1550-2783-9-1.
[9]
Singh, I.; Quinn, H.; Mok, M.; Southgate, R.J.; Turner, A.H.; Sinclair, A.J.; Hawley, J.A. The effect of exercise and training status on platelet activation: Do cocoa polyphenols play a role? Platelets 2006, 17, 361–367, doi:10.1080/09537100600746953.
[10]
Miller, K.B.; Hurst, W.J.; Payne, M.J.; Stuart, D.A.; Apgar, J.; Sweigart, D.S.; Ou, B. Impact on alkalization on the antioxidant and flavanol content of commercial cocoa powders. J. Agric. Food Chem. 2008, 56, 8527–8533, doi:10.1021/jf801670p.
[11]
Karp, J.R.; Johnston, J.D.; Tecklenburg, S.; Mickleborough, T.D.; Fly, A.D.; Stager, J.M. Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 78–91.
[12]
Gilson, S.F.; Saunders, M.J.; Moran, C.W.; Moore, R.W.; Womack, C.J.; Todd, M.K. Effects of chocolate milk consumption on markers of muscle recovery following soccer training: A randomized cross-over study. J. Int. Soc. Sports Nutr. 2010, 7, 19, doi:10.1186/1550-2783-7-19.
[13]
Pritchett, K.; Bishop, P.; Pritchett, R.; Green, M.; Katica, C. Acute effects of chocolate milk and a commercial recovery beverage on post exercise recovery indices and endurance cycling performance. Appl. Physiol. Nutr. Metab. 2009, 34, 1017–1022, doi:10.1139/H09-104.
[14]
Spaccarotella, K.J.; Andzel, W.D. The effects of low fat chocolate milk on post exercise recovery in collegiate athletes. J. Strength Cond. Res. 2011, 25, 3456–3460, doi:10.1519/JSC.0b013e3182163071.
[15]
Thomas, K.; Morris, P.; Stevenson, E. Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sports drinks. Appl. Physiol. Nutr. Metab. 2009, 34, 78–82, doi:10.1139/H08-137.
[16]
Saunders, M.J.; Kane, M.D.; Todd, M.K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med. Sci. Sports Exerc. 2004, 36, 1233–1238, doi:10.1249/01.MSS.0000132377.66177.9F.
[17]
American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 8th ed. ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2010.
[18]
Dannecker, E.A.; Koltyn, K.F.; Riley, J.L., III; Robinson, M.E. Sex differences in delayed onset muscle soreness. J. Sports Med. Phys. Fit. 2003, 43, 78–84.
[19]
Binkley, J.; Stratford, P.; Lott, S.; Riddle, D. The lower extremity functional scale (LEFS): Scale Development, measurement properties, and clinical application. Phys. Ther. 2009, 79, 371–383.
[20]
Connolly, D.; McHugh, M.; Padilla-Zakour, O. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Sports Med. 2006, 40, 679–683.
[21]
White, J.P.; Wilson, J.M.; Austin, K.G.; Greer, B.K.; St. John, N.; Panton, L.B. Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2008, 5, 5.
[22]
Howatson, G.; McHugh, M.P.; Hill, J.A.; Brouner, J.; Jewell, A.P.; van Someren, K.A.; Shave, R.E.; Howatson, S.A. Influence of tart cherry juice on indices of recovery following marathon running. Scand. J. Med. Sci. Sports 2010, 20, 843–852, doi:10.1111/j.1600-0838.2009.01005.x.
Pilaczynska-Szczesniak, L.; Skarpanska-Steinborn, A.; Deskur, E.; Basta, P.; Horoszkiewicz-Hassan, M. The influence of chokeberry juice supplementation on the reduction of oxidative stress resulting from an incremental rowing ergometer exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 14, 48–58.